Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionvgvat9i73jat5u32osg0ii3r7812ft3h): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The trapping and sticking of H and D atoms on the graphite (0001) surface is examined, over the energy range of 0.1-0.9 eV. For hydrogen to chemisorb onto graphite, the bonding carbon must pucker out of the surface plane by several tenths of an angstrom. A quantum approach in which both the hydrogen and the bonding carbon atoms can move is used to model the trapping, and a potential energy surface based on density functional theory calculations is employed. It is found, for energies not too far above the 0.2 eV barrier to chemisorption that a significant fraction of the incident H or D atoms can trap. The forces on the bonding carbon are large, and it can reconstruct within 50 fs or so. After about 100 fs, most of the trapped H atoms scatter back into the gas phase, but the 5%-10% that remain can have lifetimes on the order of a picosecond or more. Calculations of the resonance eigenstates and lifetimes confirm this. An additional lattice degree of freedom is included quantum mechanically and is shown to significantly increase the amount of H that remains trapped after 1 ps. Further increasing the incident energy destabilizes the trapped state, leading to less H remaining trapped at long times. We estimate that for a full dissipative bath, the sticking probabilities should be on the order of 0.1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1827601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!