Classical molecular dynamics simulations of an amorphous carbon tip sliding against monolayers of n-alkane chains are presented. The tribological behavior of tightly packed, pure monolayers composed of chains containing 14 carbon atoms is compared to mixed monolayers that randomly combine equal amounts of 12- and 16-carbon-atom chains. When sliding in the direction of chain cant under repulsive (positive) loads, pure monolayers consistently show lower friction than mixed monolayers. The distribution of contact forces between individual monolayer chain groups and the tip shows pure and mixed monolayers resist tip motion similarly. In contrast, the contact forces "pushing" the tip along differ in the two monolayers. The pure monolayers exhibit a high level of symmetry between resisting and pushing forces which results in a lower net friction. Both systems exhibit a marked friction anisotropy. The contact force distribution changes dramatically as a result of the change in sliding direction, resulting in an increase in friction. Upon continued sliding in the direction perpendicular to chain cant, both types of monolayers are often capable of transitioning to a state where the chains are primarily oriented with the cant along the sliding direction. A large change in the distribution of contact forces and a reduction in friction accompany this transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1828035 | DOI Listing |
Ann Biomed Eng
January 2025
Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
Purpose: To evaluate the population variation in head-to-helmet contact forces in helmet users.
Methods: Four different size Kevlar composite helmets were instrumented with contact pressure sensors and chinstrap tension meters. A total number of 89 volunteers (25 female and 64 male volunteers) participated in the study.
Sci Rep
January 2025
Zhongyuan University of Technology, Zhengzhou, 450007, China.
This paper studies the practical prescribed-time control problem for dual-arm robots handling an object with output constraints. Firstly, by utilizing the property that the sum of internal forces in the grasping space is zero, the system model is obtained and decomposed into the contact force model and free motion model, which are orthogonal to each other. Furthermore, by combining the performance function and constraint function, the original system tracking error is transformed to a new one, whose boundedness can ensure that the original system variable converges to the predetermined range within the specified time.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.
The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
Ultrasound imaging is widely valued for its safety, non-invasiveness, and real-time capabilities but is often limited by operator variability, affecting image quality and reproducibility. Robot-assisted ultrasound may provide a solution by delivering more consistent, precise, and faster scans, potentially reducing human error and healthcare costs. Effective force control is crucial in robotic ultrasound scanning to ensure consistent image quality and patient safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!