The solvation shell structure of Y3+ and the dynamics of the hydrated ion in an aqueous solution of 0.8 M YCl3 are studied in two conditions with and without an excess proton by using first principles molecular dynamics method. We find that the first solvation shell around Y3+ contains eight water molecules forming a square antiprism as expected from x-ray absorption near edge structure in both the conditions we examined. A detailed analysis relying upon localized orbitals reveals that the complexation of water molecules with yttrium cation leads to a substantial amount of charge redistribution particularly on the oxygen atoms, giving rise to the chemical shifts of approximately -20 ppm in 17O nuclear magnetic resonance relative to the computed nuclear shieldings of the bulk water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1832594 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!