Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability of micropatterned surfaces to modulate cell behavior is combined with the well-known angiogenic property of the hyaluronan-Cu (II) complex. Hyaluronan-Cu (II) microstripes 100 and 25 mum wide on aminosilanised glass substrates were fabricated by photoimmobilization following two different methods: i.e., method I consisting in the photoimmobilization of the Hyal-Cu (II) complex; and method II based on the photoimmobilization of Hyal followed by the coordination with Cu (II). The chemistry and topography of the fabricated micropatterned samples were investigated by ATR FT-IR, atomic absorption, AFM, SEM, and ToF-SIMS. ATR FT-IR analysis demonstrated that hyaluronan conjugated with a photoreactive moiety was able to coordinate Cu (II) ions and that the photoimmobilization process was successful, as indicated by the intensity decrease of the IR band of the azidic group after the photoreaction. AFM and SEM images showed that reproducible Hyal-Cu (II) microstructures with both chemical and topographical heterogeneities have been obtained by the two preparation methods. The distribution of copper on the fabricated Hyal-Cu (II) microstructures has been investigated by ToF-SIMS. In both ToF-SIMS images and spectra, on Hyal-Cu (II) microstructures prepared by method I, the Cu peak (63 m/z) was detected only on the Hyal-Cu (II) microstripes, while on Hyal-Cu (II) microstructures prepared by method II, the Cu peak showed the same intensity both on the Hyal-Cu (II) microstripes and on the aminosilanised glass substrate, in agreement with the higher amount of Cu revealed by atomic absorption. The influence of Hyal-Cu (II) micropatterned surfaces on BAEC and LEC, in terms of migration and adhesion, has been analyzed. The results obtained indicate that Hyal-Cu (II) influences BAEC behavior inducing cell migration, while it is devoid of any effect on LEC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm049568g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!