Cosmomycin D (CosD) is the major constituent fraction isolated from a culture of Streptomyces olindensis ICB20. The ability of this compound to intercalate with double-stranded DNA was studied by gel mobility shift assays and electrospray ionization mass spectrometry (ESI-MS). ESI-MS experiments showed that the complex of CosD with 16-mer double-stranded DNA was at least as stable as a complex of daunorubicin with the same DNA sequence. This is the first study showing DNA binding properties of an anthracycline containing a beta-rhodomycinone aglycone chromophore O-linked to two trisaccharide chains.

Download full-text PDF

Source
http://dx.doi.org/10.7164/antibiotics.57.647DOI Listing

Publication Analysis

Top Keywords

trisaccharide chains
8
double-stranded dna
8
dna-binding properties
4
properties cosmomycin
4
cosmomycin anthracycline
4
anthracycline trisaccharide
4
chains cosmomycin
4
cosmomycin cosd
4
cosd major
4
major constituent
4

Similar Publications

Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.

View Article and Find Full Text PDF

This study describes the applicability of the fluorescence polarization assay (FPA) based on the use of FITC-labeled oligosaccharide tracers of defined structure for the measurement of active lysozyme in hen egg white. Depending on the oligosaccharide chain length of the tracer, this method detects both the formation of the enzyme-to-tracer complex (because of lectin-like, i.e.

View Article and Find Full Text PDF

Infant Fecal Fermentation Metabolites of Osteopontin and 2'-Fucosyllactose Support Intestinal Barrier Function.

J Agric Food Chem

January 2025

School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China.

In this study, we investigated the effects of infant fecal fermentation-derived metabolites of digested osteopontin (OPN) and 2'-fucosyllactose (2'-FL), either individually or in combination, on intestinal barrier function using a Caco-2/HT-29 coculture cell model. Our results suggested that the OPN/2'-FL (1:36-1:3) cofermentation metabolites improved epithelial barrier integrity by supporting the mRNA and protein expression of occludin, claudin-1, claudin-2, ZO-1, and ZO-2. All of the OPN/2'-FL treatments decreased the production of IL-1β, IL-6, and TNF-α, while the OPN/2'-FL ratio increased IL-10 production by inhibiting activation of the MyD88/IκB-α/NF-κB signaling pathway.

View Article and Find Full Text PDF
Article Synopsis
  • Short-chain xylo-oligosaccharides (XOS), specifically xylobiose (X2) and xylotriose (X3), have higher biological activities and are desirable to produce in larger quantities.
  • The research employed pH-controlled lactic acid hydrolysis and xylanase treatment on xylan extracted from moso bamboo, achieving a notable increase in XOS yield from 33.1% to 64.1%, with X2 and X3 forming 91.0% of the final product.
  • Additionally, deep eutectic solvent pretreatment efficiently removed 87.2% of lignin, leading to a high glucose yield of 96.9% from the residual biomass after
View Article and Find Full Text PDF

Comparative analysis of extracellular and cell wall glycans from Urtica cannabina leaves was performed using chemical methods, GC, GC-MS, 1D, and 2D NMR spectroscopy. The structures of extracellular AG-II and cell wall AG-II are similar. The units are typical for AG-IIs: β-GlcpA-4-OMe-(1→, Rhap-(1 → 4)-β-GlcpA-(1→, attached to β-Galp at O-6, as well as arabinan chains attached to β-Galp at O-3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!