Fusion expression of Helicobacter pylori neutrophil-activating protein in E.coli.

World J Gastroenterol

Department of Bioengineering, Zhengzhou University, Zhengzhou 450052, Henan Province, China.

Published: January 2005

Aim: To produce a recombinant protein rMBP-NAP, which was fusionally expressed by Helicobacter pylori (H pylori) neutrophil-activating protein (NAP) and E. coli maltose-binding protein (MBP) and to evaluate its immunoreactivity and immunogenicity.

Methods: Neutrophil-activating protein gene of H pylori (HP-napA) was subcloned from the recombinant plasmid pNEB-napA, and fused to MalE gene of expressing vector pMAL-c2x. The recombinant plasmid pMAL-c2x-napA was confirmed by restriction enzyme digestion, and then transformed into E. coli TB1. Fusion protein rMBP-NAP was induced by IPTG and identified by SDS-PAGE analysis. Soluble rMBP-NAP was purified by amylose affinity chromatography. Immunoreactivity and immunogenicity of the fusion protein were evaluated by animal experiment, Western blotting with human H pylori anti-sera.

Results: E.coli TB1 carrying recombinant plasmid pMAL-c2x-napA was constructed and led to a high efficiency cytosol expression of fusion protein rBMP -NAP when induced by IPTG. The molecular weight of rBMP-NAP was about 57 kD, accounting for 37.55% of the total protein in the sonicated supernatant of E. coli TB1 (pMAL-c2x-napA). The purity of the fusion protein after one-step affinity chromatography was 94% and the yield was 100 mg per liter of bacterial culture. The purified fusion protein could be specifically recognized by both human anti-sera from clinical patients with H pylori infection and rabbit sera immunized by rMBP-NAP itself.

Conclusion: Recombinant protein rMBP-NAP might be a novel antigen for vaccine development against H pylori.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205362PMC
http://dx.doi.org/10.3748/wjg.v11.i3.454DOI Listing

Publication Analysis

Top Keywords

fusion protein
20
protein
12
neutrophil-activating protein
12
protein rmbp-nap
12
recombinant plasmid
12
helicobacter pylori
8
pylori neutrophil-activating
8
recombinant protein
8
plasmid pmal-c2x-napa
8
coli tb1
8

Similar Publications

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.

View Article and Find Full Text PDF

The Transcriptomic and Gene Fusion Landscape of Pleomorphic Salivary Gland Adenomas.

Genes Chromosomes Cancer

January 2025

Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden.

Pleomorphic adenoma (PA) is the most common salivary gland tumor. PAs are characterized by chromosomal rearrangements of 8q12 and 12q14-15, leading to gene fusions involving the PLAG1 and HMGA2 oncogenes. Here, we performed the first comprehensive study of the transcriptomic and gene fusion landscape of 38 cytogenetically characterized PAs.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages.

View Article and Find Full Text PDF

Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes.

iScience

January 2025

Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.

T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!