Effects of frying oil and Houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents.

World J Gastroenterol

Graduate Institute of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, China.

Published: January 2005

Aim: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents.

Methods: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO) for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase II enzymes, the rest of the enzymes tested represented phase I enzymes.

Results: The oxidized frying oil feeding produced a significant increase in phase I and II enzyme systems, including the content of CYP450 and microsomal protein, and the activities of NADPH reductase, EROD, PROD, ANH, AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect.

Conclusion: The OFO diet induces phases I and II enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205344PMC
http://dx.doi.org/10.3748/wjg.v11.i3.389DOI Listing

Publication Analysis

Top Keywords

frying oil
16
effects frying
8
oil houttuynia
8
houttuynia cordata
8
cordata thunb
8
xenobiotic-metabolizing enzyme
8
enzyme system
8
oxidized frying
8
microsomal protein
8
content cyp450
8

Similar Publications

Transformation of polycyclic aromatic hydrocarbons during frying stinky tofu.

Food Chem

January 2025

Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Electronic address:

Reductions in polycyclic aromatic hydrocarbon (PAH) concentrations have been observed during frying. However, transformation mechanisms of PAHs remain unclear. We hypothesize that PAHs may be oxidized into oxygenated polycyclic aromatic hydrocarbons (OPAHs) and other derivatives during frying.

View Article and Find Full Text PDF

Simultaneous determination of vegetable oil frying frequency and peroxide value based on the three-dimensional fluorescence spectroscopy and machine learning.

Food Chem

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; Weifang Institute of food science and processing technology, Weifang 261000, PR China. Electronic address:

The practice of deep-frying introduces various health concerns. Assessing the quality of frying oil is paramount. This study employs three-dimensional fluorescence spectroscopy to evaluate the peroxide value of vegetable oils after varying frying times.

View Article and Find Full Text PDF

Frying is one of the oldest cooking methods, widely used to prepare crispy and flavorful foods. However, a significant concern with fried foods is the high amount of oil absorption. The application of edible coatings is a common approach to reducing oil absorption in fried potatoes.

View Article and Find Full Text PDF

This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean oil, cottonseed oil, palm oil, palm kernel oil and coconut oil) and their degradation during this process. It is well known that during this culinary technique, oil's major and minor components degrade throughout different reactions, mainly thermoxidation, polymerization and, to a lesser extent, hydrolysis. If severe high temperatures are employed, isomerization to fatty acyl chains and cyclization are also possible.

View Article and Find Full Text PDF

The Effects of Cooking Methods on Gel Properties, Lipid Quality, and Flavor of Surimi Gels Fortified with Antarctic Krill () Oil as High Internal Phase Emulsions.

Foods

December 2024

State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

In this study, silver carp surimi products enriched with Antarctic krill oil high internal phase emulsions (AKO-HIPEs) were cooked using steaming (STE), microwave heating (MIC), and air-frying (AIR), respectively. The gel and flavor properties, lipid quality and stability were investigated. Compared to the MIC and AIR groups, the STE surimi gel added with HIPEs had better texture properties, exhibiting higher water-holding capacity and a more homogeneous structure, while the air-frying treatment resulted in visually brighter surimi products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!