In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy.

World J Gastroenterol

The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Published: January 2005

Aim: Real-time and rapid identification of the malignant tissue can be performed during or before surgical operation. Here we aimed to detect in vivo and in situ colorectal cancer by using Fourier transform infrared (FTIR) spectroscopy and fiber-optic technology.

Methods: A total of five patients with large intestine cancer were detected in vivo and in situ. Of them, three cases of colon cancer and one case of cecum cancer were detected intraoperatively and in vivo by using a FTIR spectrometer during surgical operation, and one case of rectum cancer was explored non-invasively and in vivo before the surgical operation. Normal and malignant colorectal tissues were detected in vivo and in situ using FTIR spectroscopy on the basis of fundamental studies.

Results: There were significant differences between FTIR spectra of normal and malignant colorectal tissues detected in vivo and in situ. Experimental results revealed that the spectral characteristics of normal and malignant tissues found in vivo and in situ were similar to those obtained from in vitro measurement in our previous fundamental research.

Conclusion: FTIR fiber-optic attenuated total reflectance (ATR) spectroscopy can identify in situ and in vivo colorectal cancer. FTIR spectroscopic method with fiber optics is a non-invasive, rapid, accurate and in vivo cancer detection technique in clinical diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205330PMC
http://dx.doi.org/10.3748/wjg.v11.i3.327DOI Listing

Publication Analysis

Top Keywords

vivo situ
24
colorectal cancer
12
surgical operation
12
detected vivo
12
normal malignant
12
vivo
10
cancer
8
cancer fourier
8
fourier transform
8
transform infrared
8

Similar Publications

Aptamer-Driven Multifunctional Nanoplatform for Near-Infrared Fluorescence Imaging and Rapid Inactivation of .

Anal Chem

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

() is a prominent pathogen responsible for intestinal infections, primarily transmitted through contaminated food and water. This underscores the critical need for precise and biocompatible technologies enabling early detection and intervention of bacterial colonization . Herein, a multifunctional nanoplatform (IR808-Au@ZIF-90-Apt) was designed, utilizing an -specific aptamer to initiate cascade responses triggered by intracellular ATP and GSH.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a congenital multisystem disorder characterized by early-onset bone marrow failure (BMF) and cancer susceptibility. While gene addition and repair therapies are being considered as treatment options, depleted hematopoietic stem cell (HSC) pools, poor HSC mobilization, compromised survival during transduction, and increased sensitivity to conventional conditioning strategies limit eligibility for FA patients to receive gene therapies. As an alternative approach, we explored protein replacement by mRNA delivery via lipid nanoparticles (LNPs).

View Article and Find Full Text PDF

Background: Thyroid cancer is one of the most common endocrine tumors worldwide, especially among women and the metastatic mechanism of papillary thyroid carcinoma remains poorly understood.

Methods: Thyroid cancer tissue samples were obtained for single-cell RNA-sequencing and spatial transcriptomics, aiming to intratumoral and antimetastatic heterogeneity of advanced PTC. The functions of APOE in PTC cell proliferation and invasion were confirmed through in vivo and in vitro assays.

View Article and Find Full Text PDF

Direct pacing of the mid myocardium where re-entry originates can be used to prevent ventricular arrhythmias and circumvent the need for painful defibrillation or cardiac ablation. However, there are no pacing electrodes small enough to navigate the coronary veins that cross these culprit scar regions. To address this need, we have developed an injectable ionically conductive hydrogel electrode that can fill the epicardial coronary veins and transform them into flexible electrodes.

View Article and Find Full Text PDF

Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction.

Hum Mol Genet

January 2025

Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China.

Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!