The catabolism of melatonin, whether naturally occurring or ingested, takes place via two pathways: approximately 70% can be accounted for by conjugation (sulpho- and glucurono-conjugation), and approximately 30% by oxidation. It is commonly thought that the interferon-induced enzyme indoleamine 2,3-dioxygenase (EC 1.13.11.42), which oxidizes tryptophan, is also responsible for the oxidation of 5-hydroxytryptamine (serotonin) and its derivative, melatonin. Using the recombinant enzyme expressed in Escherichia coli, we show in the present work that indoleamine 2,3-dioxygenase indeed cleaves tryptophan; however, under the same conditions, it is incapable of cleaving the two other indoleamines. By contrast, myeloperoxidase (EC 1.11.1.7) is capable of cleaving the indole moiety of melatonin. However, when using the peroxidase conditions of assay -- with H2O2 as co-substrate -- indoleamine 2,3-dioxygenase is able to cleave melatonin into its main metabolite, a kynurenine derivative. The present work establishes that the oxidative metabolism of melatonin is due, in the presence of H2O2, to the activities of both myeloperoxidase and indoleamine 2,3-dioxygenase (with lower potency), since both enzymes have Km values for melatonin in the micromolar range. Under these conditions, several indolic compounds can be cleaved by both enzymes, such as tryptamine and 5-hydroxytryptamine. Furthermore, melatonin metabolism results in a kynurenine derivative, the pharmacological action of which remains to be studied, and could amplify the mechanisms of action of melatonin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1186709 | PMC |
http://dx.doi.org/10.1042/BJ20042075 | DOI Listing |
Biochem Biophys Res Commun
July 2013
Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
The hemoprotein indoleamine 2,3-dioxygenase-1 (IDO1) is the first and rate-limiting enzyme in mammalian tryptophan metabolism. Interest in IDO1 continues to grow, due to the ever expanding influence IDO1 plays in the immune response. This study examined the contribution of all individual cysteine residues towards the overall catalytic properties and stability of recombinant human IDO1 via mutagenesis studies using a range of biochemical and spectroscopic techniques, including in vitro kinetic assessment, secondary structure identification via circular dichroism spectroscopy and thermal stability assessment.
View Article and Find Full Text PDFJ Interferon Cytokine Res
September 1996
Department of Biology, Indiana University, Bloomington, USA.
Indoleamine 2'3 dioxygenase (INDO), the rate-limiting enzyme in the catabolism of the essential amino acid L-tryptophan, is induced in many cell lines following interferon gamma (IFN-gamma) treatment. The induction of this enzyme has been associated with the antiparasitic and cytotoxic activities of human IFN-gamma. DNA analysis coupled to morphologic studies indicated that ME180 cells underwent apoptosis within 48 h of treatment with IFN-gamma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!