Simulating the dissolution and growth of zeolite Beta C.

Angew Chem Int Ed Engl

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

Published: February 2005

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200461545DOI Listing

Publication Analysis

Top Keywords

simulating dissolution
4
dissolution growth
4
growth zeolite
4
zeolite beta
4
simulating
1
growth
1
zeolite
1
beta
1

Similar Publications

Vitamin B2 Operates by Dual Thermodynamic and Kinetic Mechanisms to Selectively Tailor Urate Crystallization.

J Am Chem Soc

January 2025

Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.

Here we demonstrate how a biologically relevant molecule, riboflavin (vitamin B2), operates by a dual mode of action to effectively control crystallization of ammonium urate (NHHU), which is associated with cetacean kidney stones. In situ microfluidics and atomic force microscopy experiments confirm a strong interaction between riboflavin and NHHU crystal surfaces that substantially inhibits layer nucleation and spreading by kinetic mechanisms of step pinning and kink blocking. Riboflavin does not alter the distribution of tautomeric urate isomers, but its adsorption on NHHU crystal surfaces does interfere with the effects of minor urate tautomer by limiting its ability to induce NHHU crystal defects while also suppressing NHHU nucleation and inhibiting crystal growth by 80% at an uncharacteristically low modifier concentration.

View Article and Find Full Text PDF

Utilization of a Solid Waste Inhibitor for the Clean Flotation Enrichment of Phosphate Ores.

Langmuir

January 2025

State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China.

The accumulation of phosphogypsum (PG) in the phosphorus chemical industry poses significant environmental challenges. Therefore, developing a harmless utilization method is crucial for alleviating these burdens and promoting sustainable industry practices. In this study, PG was used as a flotation inhibitor, enabling the flotation separation of apatite and dolomite based on the main components and dissolution behavior of PG.

View Article and Find Full Text PDF

Water uptake by freeze-dried potato and soybean powders: experiments and simulations.

J Food Sci Technol

February 2025

Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477 Japan.

In this study, the water uptake of potato and soybean powders by capillary action and magnetic resonance imaging (MRI) experiments was investigated. The potato powder exhibited higher water uptake than the soybean powder, a result which was attributed to the different powder compositions. Potato and soybean powders exhibited different wetting, swelling and dispersion behaviors in water.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!