Novel 2,3-O-hydroxyethyl- and 2,3-O-hydroxypropyl cellulose products were synthesized by heterogeneous etherification of 6-O-(4-monomethoxytrityl) cellulose (MMTC). Due to the very hydrophobic character of MMTC, the reaction was successful in the presence of anionic and non-ionic detergent in the reaction mixture yielding the 2,3-O-cellulose ethers with a molar degree of substitution (MS) varying between 0.25 and 2.00 after detritylation. The products were characterized by means of (1)H and (13)C NMR spectroscopy including two-dimensional methods. The 2,3-O-hydroxypropyl cellulose samples are soluble in water at a MS as low as 0.8. The spectroscopic studies showed that the unusual solubility results from a preferred substitution of hydroxy groups of the anhydroglucose unit while the newly formed hydroxy moieties are included in the reaction to a minor extent only. In contrast, conventionally synthesized hydroxypropyl cellulose is soluble in water starting at a MS of about 4.0 because of the formation of oxyethylene side chains. (13)C DEPT 135 NMR spectrum of 2,3-O-hydroxypropyl cellulose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.200400136 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFMinerva Urol Nephrol
January 2025
Department of Urology, University of Verona, A.O.U.I. Verona, Italy.
Nanomaterials (Basel)
December 2024
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
In the original publication [...
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Advanced Structural Materials, Ministry of Education, and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China.
The growing market for sodium-ion batteries has stimulated interest in research on Prussian blue-type cathode materials. Iron hexacyanoferrate (FeHCF) is considered a desirable Prussian blue-type cathode, but the incomplete electrochemical property of its low-spin iron sites hinders its further practical application. In this paper, carboxymethyl cellulose is demonstrated to have an appropriate binding energy through DFT calculations, synthesize Prussian blue in situ, balance Fe and water in FeHCF, and introduce Fe vacancies to activate low-spin Fe sites.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Science and Technology Division, CSIR─National Institute for Interdisciplinary Science and Technology, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.
Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!