Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glutamate is the principal excitatory neurotransmitter in the nervous system. Inactivation of synaptic glutamate is handled by the glutamate transporter GLT1 (also known as EAAT2; refs 1, 2), the physiologically dominant astroglial protein. In spite of its critical importance in normal and abnormal synaptic activity, no practical pharmaceutical can positively modulate this protein. Animal studies show that the protein is important for normal excitatory synaptic transmission, while its dysfunction is implicated in acute and chronic neurological disorders, including amyotrophic lateral sclerosis (ALS), stroke, brain tumours and epilepsy. Using a blinded screen of 1,040 FDA-approved drugs and nutritionals, we discovered that many beta-lactam antibiotics are potent stimulators of GLT1 expression. Furthermore, this action appears to be mediated through increased transcription of the GLT1 gene. beta-Lactams and various semi-synthetic derivatives are potent antibiotics that act to inhibit bacterial synthetic pathways. When delivered to animals, the beta-lactam ceftriaxone increased both brain expression of GLT1 and its biochemical and functional activity. Glutamate transporters are important in preventing glutamate neurotoxicity. Ceftriaxone was neuroprotective in vitro when used in models of ischaemic injury and motor neuron degeneration, both based in part on glutamate toxicity. When used in an animal model of the fatal disease ALS, the drug delayed loss of neurons and muscle strength, and increased mouse survival. Thus these studies provide a class of potential neurotherapeutics that act to modulate the expression of glutamate neurotransmitter transporters via gene activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature03180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!