We reported previously that fusogenic liposome (FL) introduced antigen protein encapsulated in the liposome directly into the cytoplasm of the antigen presenting cells, and that it induced immune responses. In the present study, we encapsulated TAX38-46, an HTLV-I derived protein and an antigen peptide model, into FL. The ability to induce effective cytotoxic T lymphocytes (CTL) responses in immunized mice was evaluated. Results showed FL could induce CTL response effectively and suggested that FL is a potential peptide vaccine carrier.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.28.192DOI Listing

Publication Analysis

Top Keywords

fusogenic liposome
8
vaccine carrier
8
ctl response
8
liposome effective
4
effective vaccine
4
carrier peptide
4
peptide vaccination
4
vaccination induce
4
induce cytotoxic
4
cytotoxic lymphocyte
4

Similar Publications

Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes.

View Article and Find Full Text PDF

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes.

Beilstein J Nanotechnol

December 2024

Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia.

Endosomal entrapment significantly limits the efficacy of drug delivery systems. This study investigates sodium oleate-modified liposomes (SO-Lipo) as an innovative strategy to enhance endosomal escape and improve cytosolic delivery in 4T1 triple-negative breast cancer cells. We aimed to elucidate the mechanistic role of sodium oleate in promoting endosomal escape and compared the performance of SO-Lipo with unmodified liposomes (Unmodified-Lipo) and Aurein 1.

View Article and Find Full Text PDF

This study focused on the development of cholesterol-free fusogenic liposomes with different surface charge with the aim of improving biofilm penetration. In vitro assessments of the liposomes included physical stability, biocompatibility, fusion with microbial cells, and the ability to penetrate established biofilms. Using dynamic light scattering, cholesterol-free, fusogenic liposomes were found to be < 200 nm in size with small size distribution (PDI < 0.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) possess the characteristics of their parent cells, based on which various studies have actively investigated treatments for diseases using mesenchymal stem cell-derived EVs due to their regenerative activity. Furthermore, in recent years, there have been significant efforts to engineer EVs to improve their native activities and integrate additional functions. Although both endogenous and exogenous methods are used for engineering EVs, endogenous methods may pose the problem of administering substances to cells undergoing metabolic changes, which can cause potential side effects.

View Article and Find Full Text PDF

Enveloped viruses enter cells by fusing their envelopes to host cell membranes. Vesicular stomatitis virus (VSV) glycoprotein (G) is a prototype for class III fusion proteins. Although structures of the stable pre- and postfusion ectodomain of G are known, its fusogenic intermediates are insufficiently characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!