The implantation of small pieces of human primary lung tumor biopsy tissue into SCID mice results in a viable s.c. xenograft in which the tissue architecture, including tumor-associated leukocytes, tumor cells, and stromal cells, is preserved in a functional state. By monitoring changes in tumor volume, gene expression patterns, cell depletion analysis, and the use of function-blocking Abs, we previously established in this xenograft model that exogenous IL-12 mobilizes human tumor-associated leukocytes to kill tumor cells in situ by indirect mechanisms that are dependent upon IFN-gamma. In this study immunohistochemistry and FACS characterize the early cellular events in the tumor microenvironment induced by IL-12. By 5 days post-IL-12 treatment, the constitutively present human CD45(+) leukocytes have expanded and infiltrated into tumor-rich areas of the xenograft. Two weeks post-treatment, there is expansion of the human leukocytes and complete effacement of the tumor compared with tumor progression and gradual loss of most human leukocytes in control-treated xenografts. Immunohistochemical analyses reveal that the responding human leukocytes are primarily activated or memory T cells, with smaller populations of B cells, macrophages, plasma cells, and plasmacytoid dendritic cells capable of producing IFN-alpha. The predominant cell population was also characterized by FACS and was shown to have a phenotype consistent with a CD4(+) effector memory T cell. We conclude that quiescent CD4(+) effector memory T cells are present within the tumor microenvironment of human lung tumors and can be reactivated by the local and sustained release of IL-12 to proliferate and secrete IFN-gamma, leading to tumor cell eradication.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.174.2.898DOI Listing

Publication Analysis

Top Keywords

cd4+ effector
12
effector memory
12
memory cells
12
tumor cells
12
human leukocytes
12
cells
10
tumor
10
human
8
il-12 proliferate
8
tumor-associated leukocytes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!