To study the mechanisms of branchial acid-base regulation, Pacific spiny dogfish were infused intravenously for 24 h with either HCl (495+/- 79 micromol kg(-1) h(-1)) or NaHCO(3) (981+/-235 micromol kg(-1) h(-1)). Infusion of HCl produced a transient reduction in blood pH. Despite continued infusion of acid, pH returned to normal by 12 h. Infusion of NaHCO(3) resulted in a new steady-state acid-base status at approximately 0.3 pH units higher than the controls. Immunostained serial sections of gill revealed the presence of separate vacuolar proton ATPase (V-H(+)-ATPase)-rich or sodium-potassium ATPase (Na(+)/K(+)-ATPase)-rich cells in all fish examined. A minority of the cells also labeled positive for both transporters. Gill cell membranes prepared from NaHCO(3)-infused fish showed significant increases in both V-H(+)-ATPase abundance (300+/-81%) and activity. In addition, we found that V-H(+)-ATPase subcellular localization was mainly cytoplasmic in control and HCl-infused fish, while NaHCO(3)-infused fish demonstrated a distinctly basolateral staining pattern. Western analysis in gill membranes from HCl-infused fish also revealed increased abundance of Na(+)/H(+) exchanger 2 (213+/-5%) and Na(+)/K(+)-ATPase (315+/-88%) compared to the control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.01382 | DOI Listing |
J Comp Physiol B
January 2025
Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Elasmobranchs are commonly carnivores and are important in energy transfer across marine ecosystems. Despite this, relatively few studies have examined the physiological underpinnings of nutrient acquisition in these animals. Here, we investigated the mechanisms of uptake at the spiral valve intestine for two representative amino acids (-alanine, -leucine) and one representative fatty acid (oleic acid), each common to the diet of a carnivore, the Pacific spiny dogfish (Squalus suckleyi).
View Article and Find Full Text PDFThe spiny-scale pricklefish Hispidoberyx ambagiosus Kotlyar, 1981, the sole member of the family Hispidoberycidae, is known from only a few specimens collected from tropical waters of the Indo-West Pacific region. Because its phylogenetic position has not been well investigated, the present study describes the osteology, myology and other morphological features of H. ambagiosus, and reassesses the phylogenetic position of the species, and its relationships with related taxa.
View Article and Find Full Text PDFConserv Physiol
August 2024
Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield BC V0R 1B0, Canada.
Pacific spiny dogfish, , move to shallow coastal waters during critical reproductive life stages and are thus at risk of encountering hypoxic events which occur more frequently in these areas. For effective conservation management, we need to fully understand the consequences of hypoxia on marine key species such as elasmobranchs. Because of their benthic life style, we hypothesized that are hypoxia tolerant and able to efficiently regulate oxygen consumption, and that anaerobic metabolism is supported by a broad range of metabolites including ketones, fatty acids and amino acids.
View Article and Find Full Text PDFJ Exp Biol
August 2024
Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.
Nitrogen recycling and amino acid synthesis are two notable ways in which the gut microbiome can contribute to host metabolism, and these processes are especially important in nitrogen-limited animals. Marine elasmobranchs are nitrogen limited as they require substantial amounts of this element to support urea-based osmoregulation. However, following antibiotic-induced depletion of the gut microbiome, elasmobranchs are known to experience a significant decline in circulating urea and employ compensatory nitrogen conservation strategies such as reduced urea and ammonia excretion.
View Article and Find Full Text PDFIntegr Comp Biol
September 2024
Florida Atlantic University, Department of Biological Sciences, Boca Raton, FL 33431, USA.
To smell, fish rely on passive water flow into their olfactory chambers and through their olfactory rosettes to detect chemical signals in their aquatic environment. The olfactory rosette is made up of secondarily folded tissues called olfactory lamellae. The olfactory morphology of cartilaginous fishes varies widely in both rosette gross morphology and lamellar microstructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!