The NMDA receptor is an important subtype glutamate receptor that acts as a nonselective cation channel highly permeable to both calcium (Ca2+) and sodium (Na+). The activation of NMDA receptors produces prolonged increases of intracellular Ca2+ concentration ([Ca2+]i) and thereby triggers downstream signaling pathways involved in the regulation of many physiological and pathophysiological processes. Previous studies have focused on how Ca2+ or Na+ affects NMDA receptor activity in isolation. Specifically, [Ca2+]i increase may downregulate NMDA channels and thus is considered an important negative feedback mechanism controlling NMDA receptor activity, whereas an increase in intracellular Na+ concentration ([Na+]i) may upregulate NMDA channel activity. Thus so that the activity-dependent regulation of NMDA receptors and neuroplasticity may be further understood, a critical question that has to be answered is how an individual NMDA receptor may be regulated when both of these ionic species flow into neurons during the same time period via neighboring activated NMDA receptors. Here we report that the gating of a NMDA channel is regulated by the activation of remote NMDA receptors via a functional Na+-Ca2+ interaction and that during the activation of NMDA receptors Na+ influx potentiates Ca2+ influx on one hand and overcomes Ca2+-induced inhibition of NMDA channel gating on the other hand. Furthermore, we have identified that a critical increase (5 +/- 1 mM) in [Na+]i is required to mask the effects of Ca2+ on NMDA channel gating in cultured hippocampal neurons. Thus cross talk between NMDA receptors mediated by a functional Na+-Ca2+ interaction is a novel mechanism regulating NMDA receptor activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725202PMC
http://dx.doi.org/10.1523/JNEUROSCI.3791-04.2005DOI Listing

Publication Analysis

Top Keywords

nmda receptors
28
nmda receptor
24
nmda
18
receptor activity
16
nmda channel
16
regulation nmda
8
remote nmda
8
activation nmda
8
functional na+-ca2+
8
na+-ca2+ interaction
8

Similar Publications

Lutein Exerts Antioxidant and Neuroprotective Role on Schizophrenia-Like Behaviours in Mice.

Int J Dev Neurosci

February 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.

Schizophrenia is an esteemed neuropsychiatric condition delineated by the manifestation which role of the N-methyl-D-aspartate receptor (NMDAR) is important. Lutein administration exhibits protective effects via NMDA receptors. Thus, the main goal of this research was to investigate how lutein can possibly act as an antioxidant and provide protection for the brain against schizophrenia-like behaviours in mice.

View Article and Find Full Text PDF

Morphine belongs to the class of opioids and is known for its potential to cause dependence and addiction, particularly with prolonged use. Due to the associated risks, caution must be taken when prescribing and limiting its clinical use. Overexpression of N-methyl-D-aspartate (NMDA) receptors, nitric oxide and cGMP pathway has been implicated in exacerbate the development of morphine dependence and withdrawal.

View Article and Find Full Text PDF

Exploring New Structures of Kinase Inhibitors and Multitarget Strategies in Alzheimer's Disease Treatment.

Protein Pept Lett

December 2024

Department of Pharm. Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.

Alzheimer's disease (AD) treatments currently available have ineffective results. Previously employed Acetylcholine esterase inhibitors and memantine, an NMDA receptor antagonist, target a single target structure that plays a complex role in the multifactorial progression of disease. Memantine moderates the toxic effects of excessive glutamate activity by blocking NMDA receptors, which decreases neurotoxicity in AD, while acetylcholine esterase inhibitors function by blocking cholinergic receptors (muscarinic and nicotinic), preventing the breakdown of acetylcholine, thereby enhancing cholinergic transmission, thus improving cognitive functions in mild to moderate stages of AD.

View Article and Find Full Text PDF

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis stands as the most prevalent form of autoimmune encephalitis, primarily affecting young patients and exhibiting a higher incidence among females. Patients frequently present with psychiatric symptoms or cognitive impairments such as speech disturbances, decreased level of consciousness, autonomic dysfunction, as well as seizures, dyskinesias, and catatonia due to overactivation of extrasynaptic NMDA receptors. To date, there is no gold standard for the diagnosis of catatonia; however, a few rating scales exist to measure this phenomenon, with the Bush Francis Catatonia Rating Scale being the most commonly used due to its validity, reliability, and ease of application.

View Article and Find Full Text PDF

A-mediated synaptic glutamate dynamics and calcium dynamics in astrocytes associated with Alzheimer's disease.

Cogn Neurodyn

December 2024

School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119 People's Republic of China.

The accumulation of amyloid peptide is assumed to be one of the main causes of Alzheimer's disease . There is increasing evidence that astrocytes are the primary targets of A. A can cause abnormal synaptic glutamate, aberrant extrasynaptic glutamate, and astrocytic calcium dysregulation through astrocyte glutamate transporters facing the synaptic cleft (GLT-syn), astrocyte glutamate transporters facing the extrasynaptic space (GLT-ess), metabotropic glutamate receptors in astrocytes (mGluR), N-methyl-D-aspartate receptors in astrocytes (NMDAR), and glutamatergic gliotransmitter release (Glio-Rel).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!