[Surgical anatomy of transoral atlantoaxial reduction plate internal fixation].

Zhonghua Wai Ke Za Zhi

Traumatical Orthopedics Center, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China.

Published: November 2004

Objective: To provide anatomical data for transoral atlantoaxial reduction plate internal fixation.

Method: Microsurgical dissecting was performed on 10 fresh craniocervical specimens layer by layer according to transoral approach. Stratification of posterior pharyngeal wall, course of vertebral artery, adjacent relationships of atlas and axis and correlative anatomical parameters of internal fixation to atlantoaxial joint were observed.

Result: (1) Posterior pharyngeal wall consisted of 2 layers and 2 interspace: mucosa, anterior fascia of vertebrae, posterior interspace of pharynx and anterior interspace of vertebrae. (2) The range from anterior rim of foramen magnum to C3 could be exposed by this approach. (3) The distance between the vertebral artery at atlas and midline was (25.2 +/- 2.3) mm and that between the vertebral artery at axis and midline was (18.4 +/- 2.6) mm. (4) The width of atlas and that of axis could be exposed respectively to (39.4 +/- 2.2) mm and (39.0 +/- 2.1) mm. The distance (a) between 2 atlas screw inserting points (center of anterior aspect of C-1 lateral mass) was (31.4 +/- 3.3) mm. The vertical distance (b) between the connecting line of 2 atlas screw inserting points and that of 2 axis screw inserting points (at the central part of the vertebrae which was 3 - 4 mm lateral to the midline of C-2 vertebrae) was (18.7 +/- 2.7) mm. The odds of a/b was 1.5 approximately 1.7.

Conclusions: Anterior atlantoaxial plate internal fixation through transoral approach is suitable and feasible. The design of the plate should be based on the above data.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plate internal
12
vertebral artery
12
screw inserting
12
inserting points
12
transoral atlantoaxial
8
atlantoaxial reduction
8
reduction plate
8
transoral approach
8
posterior pharyngeal
8
pharyngeal wall
8

Similar Publications

Modern techniques of rib fracture fixation surgery follow the AO principles of fracture reduction, fixation, and appropriate soft tissue handling. Fixation techniques can be performed using anatomic reduction and rigid fixation, or bridge plate fixation for comminuted fractures. Anatomic and nonanatomic plates can be used, although titanium precontoured locking plates are the most commonly used.

View Article and Find Full Text PDF

Background: The standard approach for addressing intra-articular calcaneal fractures involves open reduction with plate and screw fixation, with ongoing discourse regarding the application of grafts to address bone gaps. The aim of this study is the temporal comparison of the radiological and functional outcomes in patients undergoing surgery for intra-articular calcaneal fractures, with a specific focus on the use of bone grafts.

Methods: Thirty patients, comprising 13 with iliac grafts and 17 without, were enrolled in the study.

View Article and Find Full Text PDF

An Open-source Python Tool for Traction Force Microscopy on Micropatterned Substrates.

Bio Protoc

January 2025

Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, Grenoble, France.

Cell-generated forces play a critical role in driving and regulating complex biological processes, such as cell migration and division and cell and tissue morphogenesis in development and disease. Traction force microscopy (TFM) is an established technique developed in the field of mechanobiology used to quantify cellular forces exerted on soft substrates and internal mechanical tissue stresses. TFM measures cell-generated traction forces in 2D or 3D environments with varying mechanical and biochemical properties.

View Article and Find Full Text PDF

Four-color single-molecule imaging system for tracking GPCR dynamics with fluorescent HiBiT peptide.

Biophys Physicobiol

September 2024

Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.

Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques.

View Article and Find Full Text PDF

Introduction: EUS-guided fine-needle organoid creation (EUS-FNO) from pancreatic cancer (PC) has been increasingly important for precision medicine. The cost for pancreatic organoid creation is substantial and close to 2000 USD/specimen in our institution, and the specimen has to be processed immediately after tissue acquisition so the more passes and specimens, the higher cost of organoid creation will incur. To date, no prospective comparison trial has answered how many needle passes of EUS-FNO needed for a successful organoid creation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!