Interfacial properties of Lennard-Jones chains by direct simulation and density gradient theory.

J Chem Phys

Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus de la Universitat, Autònoma de Barcelona, 08193 Bellaterra, Spain.

Published: December 2004

We perform a series of molecular dynamics simulations of Lennard-Jones chains systems, up to tetramers, in order to investigate the influence of temperature and chain length on their phase separation and interfacial properties. Simulation results serve as a test to check the accuracy of a statistical associated fluid theory (soft-SAFT) coupled with the density gradient theory. We focus on surface tension and density profiles. The simulations allow us to discuss the success and limitations of the theory and how to estimate the only adjustable parameter, the influence parameter. This parameter is obtained by fitting the surface tension, and then used to obtain the density profiles in a predictive manner. A good agreement is found if the temperature dependence of this parameter is neglected.(c) 2004 American Institute of Physics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1818679DOI Listing

Publication Analysis

Top Keywords

interfacial properties
8
lennard-jones chains
8
density gradient
8
gradient theory
8
surface tension
8
tension density
8
density profiles
8
properties lennard-jones
4
chains direct
4
direct simulation
4

Similar Publications

Interfacial Engineering with a Conjugated Conductive Polymer for a Highly Reversible Zn Anode.

ACS Appl Mater Interfaces

January 2025

Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, China.

For Zn metal batteries, the Zn anode faces several challenges, including Zn dendrites, hydrogen evolution, and corrosion. These issues are closely related to the Zn deposition process at the electrode/electrolyte interface. Herein, we propose interfacial engineering to protect the Zn anode and induce homogeneous deposition using conjugated cyclized polyacrylonitrile (cPAN) polymer nanofibers.

View Article and Find Full Text PDF

Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance.

J Colloid Interface Sci

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:

Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites.

View Article and Find Full Text PDF

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!