This study compared the mechanical strength of commercially prepared antibiotic bone cement (Simplex With Tobramycin; Stryker, Mahwah, NJ), cement with generic tobramycin (Pharma-Tek, Huntington, NY) blended in by the orthopedic nursing staff, and standard nonantibiotic bone cement. The results showed an approximate 36% decrease in the strength of the cement with hand-mixed generic tobramycin, while the commercial antibiotic cement remained unchanged relative to the nonantibiotic control. These results indicate the mechanical properties of bone cement can be severely compromised by hand-mixing antibiotics into bone cement at the time of surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3928/0147-7447-20041201-19 | DOI Listing |
PLoS One
January 2025
Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, Korea.
Polylactic acid (PLA) has garnered attention for use in interim dental restorations due to its biocompatibility, biodegradability, low cost, ease of fabrication, and moderate strength. However, its performance under intraoral conditions, particularly under heat and moisture, remains underexplored. This study evaluated the mechanical properties of PLA interim crowns compared with those of polymethylmethacrylate (PMMA) and bisphenol crowns under simulated intraoral conditions with thermocycling.
View Article and Find Full Text PDFRadiographics
February 2025
Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, Canada K1H 8L6 (D.V.F., J.L.); Department of Radiology, Radiation Oncology and Medical Physics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (D.V.F., J.L.); Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (D.V.F., J.L.); and Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (T.M.).
Formerly termed or , core muscle injury (CMI) encompasses abnormality of structures within the so-called core, which is essentially the hip, abdomen, and pubis. Compared with data on image-guided procedures of other joints, information regarding procedures performed to address CMI and other disorders of the pubic symphysis is lacking. These procedures can be daunting given the joint's small size, surrounding critical neurovascular structures, and three-dimensional anatomy.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon, South Korea.
The objective of this study is to fabricate and develop hydroxypropyl methylcellulose (HPMC) hydrogel (HG)-based composite bone cements with incorporation of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and with/without polymethylmethacrylate (PMMA) for vertebroplasty. For animal study, twenty female Wister rats (250-300 g, 12 weeks of age) were divided into four groups including a two non-ovariectomy (NOVX) groups and two ovariectomy (OVX)-induced osteoporosis groups. Two prepared biocomposites including HG/β-TCP/HA and HG/β-TCP/HA/PMMA were injected into the tibial defects of both OVX and NOVX rats for evaluating in vivo osteogenesis after 12 weeks.
View Article and Find Full Text PDFBiomed Mater
January 2025
School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.
Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.
Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.
Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!