Campylobacter jejuni gene expression in response to iron limitation and the role of Fur.

Microbiology (Reading)

Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK.

Published: January 2005

Campylobacter jejuni is a zoonotic pathogen and the most common cause of bacterial foodborne diarrhoeal illness worldwide. To establish intestinal colonization prior to either a commensal or pathogenic interaction with the host, C. jejuni will encounter iron-limited niches where there is likely to be intense competition from the host and normal microbiota for iron. To gain a better understanding of iron homeostasis and the role of ferric uptake regulator (Fur) in iron acquisition in C. jejuni, a proteomic and transcriptome analysis of wild-type and fur mutant strains in iron-rich and iron-limited growth conditions was carried out. All of the proposed iron-transport systems for haemin, ferric iron and enterochelin, as well as the putative iron-transport genes p19, Cj1658, Cj0177, Cj0178 and cfrA, were expressed at higher levels in the wild-type strain under iron limitation and in the fur mutant in iron-rich conditions, suggesting that they were regulated by Fur. Genes encoding a previously uncharacterized ABC transport system (Cj1660-Cj1663) also appeared to be Fur regulated, supporting a role for these genes in iron uptake. Several promoters containing consensus Fur boxes that were identified in a previous bioinformatics search appeared not to be regulated by iron or Fur, indicating that the Fur box consensus needs experimental refinement. Binding of purified Fur to the promoters upstream of the p19, CfrA and CeuB operons was verified using an electrophoretic mobility shift assay (EMSA). These results also implicated Fur as having a role in the regulation of several genes, including fumarate hydratase, that showed decreased expression in response to iron limitation. The known PerR promoters were also derepressed in the C. jejuni Fur mutant, suggesting that they might be co-regulated in response to iron and peroxide stress. These results provide new insights into the effects of iron on metabolism and oxidative stress response as well as the regulatory role of Fur.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.27412-0DOI Listing

Publication Analysis

Top Keywords

fur
13
response iron
12
iron limitation
12
fur mutant
12
iron
11
campylobacter jejuni
8
expression response
8
role fur
8
role
5
jejuni gene
4

Similar Publications

A hitchhiker's guide to active motion.

Eur Phys J E Soft Matter

January 2025

Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.

Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of hitchhiking in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles.

View Article and Find Full Text PDF

Introduction: Renal cell carcinoma (RCC) is one of the most common types of urogenital cancer. The introduction of immune-based combinations, including dual immune-checkpoint inhibitors (ICI) or ICI plus tyrosine kinase inhibitors (TKIs), has radically changed the treatment landscape for metastatic RCC, showing varying efficacy across different prognostic groups based on the International Metastatic RCC Database Consortium (IMDC) criteria.

Materials And Methods: This retrospective multicenter study, part of the ARON-1 project, aimed to evaluate the outcomes of favorable-risk metastatic RCC patients treated with immune-based combinations or sunitinib.

View Article and Find Full Text PDF

Background And Objective: Non-motor symptoms frequently develop throughout the disease course of Parkinson's disease (PD), and pose affected individuals at risk of complications, more rapid disease progression and poorer quality of life. Addressing such symptom burden, the 2023 revised "Parkinson's disease" guideline of the German Society of Neurology aimed at providing evidence-based recommendations for managing PD non-motor symptoms, including autonomic failure, pain and sleep disturbances.

Methods: Key PICO (Patient, Intervention, Comparison, Outcome) questions were formulated by the steering committee and refined by the assigned authors.

View Article and Find Full Text PDF

Kirners deformity - a systematic review and surgery recommendations.

Arch Orthop Trauma Surg

January 2025

Abteilung für Plastische und Handchirurgie UniversitätsCentrum für Orthopädie, Unfall- & Plastische Chirurgie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany.

Background: Kirner deformity is a rare anomaly of the little finger in adolescents, characterized by a deformity of the distal phalanx and a radiologically L-shaped epiphysis, along with palmar and radial angulation of the distal phalanx. Due to the rarity of these pathological findings, there are no systematic literature reviews available. This work serves as an overview of the clinical presentation, frequency and age distributions, as well as possible conservative and surgical treatment options.

View Article and Find Full Text PDF

The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!