Microarrays were utilized to determine gene expression of vascular endothelial cells (ECs) subjected to mechanical stretch for insight into the role of strain in vascular pathophysiology. Over 4,000 genes were screened for expression changes resulting from cyclic strain (10%, 1 Hz) of human umbilical vein ECs for 6 and 24 h. Comparison of t-statistics and adjusted P values identified genes having significantly different expression between strained and static cells but not between strained and motion control. Relative to static, 6 h of cyclic stretch upregulated two genes and downregulated two genes, whereas 24 h of cyclic stretch upregulated eight genes but downregulated no genes. However, incorporating the motion control revealed that fluid agitation over the cells, rather than strain, is the primary regulator of differential expression. Furthermore, no gene exceeded a threefold change when comparing cyclic strain to either static or motion control. Quantitative real-time polymerase chain reaction confirmed the dominance of fluid agitation in gene regulation with the exception of heat shock protein 10 at 24 h and plasminogen activator inhibitor 1 at 6 h. Taken together, the small number of differentially expressed genes and their low fold expression levels indicate that cyclic strain is a weak inducer of gene regulation in ECs. However, many of the differentially expressed genes possess antioxidant properties, suggesting that oxidative mechanisms direct EC adaptation to cyclic stretch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/physiolgenomics.00029.2003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!