Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The combination of gemcitabine and radiotherapy is a promising combined modality therapy. However, the clinical application of this combination has to be implemented carefully because of an increased toxicity to normal tissues. A body of experimental evidence shows that gemcitabine is a potent radiosensitizer in vitro and in vivo. The observations so far indicate that various mechanisms are responsible for the radiosensitizing effect. Although it is often difficult to transfer experimental data to the clinic, these studies offer the possibility to develop an improved schedule of administration for patient treatment, based on rational evidence in tumor biology. In the current review, the preclinical data that support the use of gemcitabine as a radiosensitizing agent and the clinical trials that have been conducted to date are summarized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/theoncologist.10-1-34 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!