A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The three nitric-oxide synthases differ in their kinetics of tetrahydrobiopterin radical formation, heme-dioxy reduction, and arginine hydroxylation. | LitMetric

AI Article Synopsis

  • Nitric oxide synthases (NOSs) convert l-arginine into nitric oxide and citrulline, with a focus on the role of the cofactor (6R)-tetrahydrobiopterin (H4B) in this process.
  • Studies revealed that H4B radical formation in inducible NOS (iNOS) is linked to the breakdown of a heme-dioxy intermediate and subsequent arginine hydroxylation.
  • Kinetic comparisons show that although the rates of H4B radical formation differ among endothelial NOS (eNOS) and neuronal NOS (nNOS), all three NOSs follow a common mechanism where H4B accelerates arginine hydroxylation, and the stability of the radical correlates with

Article Abstract

The nitric-oxide synthases (NOSs) make nitric oxide and citrulline from l-arginine. How the bound cofactor (6R)-tetrahydrobiopterin (H4B) participates in Arg hydroxylation is a topic of interest. We demonstrated previously that H4B radical formation in the inducible NOS oxygenase domain (iNOSoxy) is kinetically coupled to the disappearance of a heme-dioxy intermediate and to Arg hydroxylation. Here we report single turnover studies that determine and compare the kinetics of these transitions in Arg hydroxylation reactions catalyzed by the oxygenase domains of endothelial and neuronal NOSs (eNOSoxy and nNOSoxy). There was a buildup of a heme-dioxy intermediate in eNOSoxy and nNOSoxy followed by a monophasic transition to ferric enzyme during the reaction. The rate of heme-dioxy decay matched the rates of H4B radical formation and Arg hydroxylation in both enzymes. The rates of H4B radical formation differed such that nNOSoxy (18 s(-1)) > iNOSoxy (11 s(-1)) > eNOSoxy (6 s(-1)), whereas the lifetimes of the resulting H4B radical followed an opposite rank order. 5MeH4B supported a three-fold faster radical formation and greater radical stability relative to H4B in both eNOSoxy and nNOSoxy. Our results indicate the following: (i) the three NOSs share a common mechanism, whereby H4B transfers an electron to the heme-dioxy intermediate. This step enables Arg hydroxylation and is rate-limiting for all subsequent steps in the hydroxylation reaction. (ii) A direct correlation exists between pterin radical stability and the speed of its formation in the three NOSs. (iii) Uncoupled NO synthesis often seen for eNOS at low H4B concentrations may be caused by the slow formation and poor stability of its H4B radical.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M409737200DOI Listing

Publication Analysis

Top Keywords

radical formation
20
arg hydroxylation
20
h4b radical
20
heme-dioxy intermediate
12
enosoxy nnosoxy
12
radical
9
h4b
9
nitric-oxide synthases
8
rates h4b
8
radical stability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!