The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA.

J Biol Chem

Institut für Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim, Universität Heidelberg, Maybachstrasse 14-16, D-68169 Mannheim, Germany.

Published: March 2005

The monomeric GTPase RhoA, which is a key regulator of numerous cellular processes, is activated by a variety of G protein-coupled receptors, through either G12 or G(q) family proteins. Here we report that p63RhoGEF, a recently identified RhoA-specific guanine nucleotide exchange factor, enhances the Rho-dependent gene transcription induced by agonist-stimulated G(q/11)-coupled receptors (M3-cholinoceptor, histamine H1 receptor) or GTPase-deficient mutants of G alpha(q) and G alpha11. We further demonstrate that active G alpha(q) or G alpha11, but not G alpha12 or G alpha13, strongly enhances p63RhoGEF-induced RhoA activation by direct protein-protein interaction with p63RhoGEF at its C-terminal half. Moreover, the activation of p63RhoGEF by G alpha(q/11) occurs independently of and in competition to the activation of the canonical G alpha(q/11) effector phospholipase C beta. Therefore, our results elucidate a new signaling pathway by which G alpha(q/11)-coupled receptors specifically induce Rho signaling through a direct interaction of activated G alpha(q/11) subunits with p63RhoGEF.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M411322200DOI Listing

Publication Analysis

Top Keywords

guanine nucleotide
8
nucleotide exchange
8
exchange factor
8
alphaq alpha11
8
p63rhogef
5
factor p63rhogef
4
p63rhogef specific
4
specific link
4
link gq/11-coupled
4
gq/11-coupled receptor
4

Similar Publications

Dynamic Coupling of MAPK Signaling to the Guanine Nucleotide Exchange Factor GEF-H1.

Onco Targets Ther

January 2025

Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada.

The gene is nearly ubiquitously subjected to activating mutation in pancreatic adenocarcinomas (PDAC), occurring at a frequency of over 90% in tumors. Mutant KRAS drives sustained signaling through the MAPK pathway to affect frequently disrupted cancer phenotypes including transcription, proliferation and cell survival. Recent research has shown that PDAC tumor growth and survival required a guanine nucleotide exchange factor for RAS homolog family member A (RhoA) called GEF-H1.

View Article and Find Full Text PDF

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.

View Article and Find Full Text PDF

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

Structure and function of a near fully-activated intermediate GPCR-Gαβγ complex.

Nat Commun

January 2025

Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.

Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.

View Article and Find Full Text PDF

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!