Large changes in the activity of serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) in the pineal gland control the rhythmic production of the time-keeping hormone melatonin. The activity of AANAT reflects changes in the amount and activation state of the AANAT protein, both of which increase at night. The molecular basis of this regulation is now becoming known, and recent data indicate that this involves phosphorylation-dependent binding to the 14-3-3 protein at two sites, one of which, Ser-205, is located several residues from the C terminus. In this study, we determined whether substitution of this residue with a non-hydrolyzable the phosphoserine/phosphothreonine mimetic would promote binding to the 14-3-3 protein and enhance cellular stability. To accomplish this, a C-terminal AANAT peptide containing the phosphonodifluoromethylene alanine at Ser-205 was synthesized and fused to bacterially expressed AANAT(30-199) using expressed protein ligation. The resulting semisynthetic protein has enhanced affinity for the expressed 14-3-3 protein and exhibits greater cellular stability in microinjection experiments, as compared with the unmodified AANAT. Enhanced 14-3-3 binding was also observed using humanized ovine AANAT, which has a different C-terminal sequence (Gly-Cys) than the ovine enzyme (Asp-Arg), indicating that that characteristic is not unique to the ovine enzyme. These studies provide the first evidence that substitution of Ser-205 with the stable phosphomimetic amino acid phosphonodifluoromethylene alanine enhances binding to 14-3-3 and the cellular stability of AANAT and are consistent with the view that Ser-205 phosphorylation plays a critical role in the regulation of AANAT activity and melatonin production.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M412283200DOI Listing

Publication Analysis

Top Keywords

cellular stability
16
phosphonodifluoromethylene alanine
12
binding 14-3-3
12
14-3-3 protein
12
serotonin n-acetyltransferase
8
substitution ser-205
8
aanat
8
ovine enzyme
8
protein
6
ser-205
5

Similar Publications

Adapting biological systems for nanoparticle synthesis opens an orthogonal Green direction in nanoscience by reducing the reliance on harsh chemicals and energy-intensive procedures. This study addresses the challenge of efficient catalyst preparation for organic synthesis, focusing on the rapid formation of palladium (Pd) nanoparticles using bacterial cells as a renewable and eco-friendly support. The preparation of catalytically active nanoparticles on the bacterium VKM B-3302 represents a more suitable approach to increase the reaction efficiency due to its resistance to metal salts.

View Article and Find Full Text PDF

Mechanistic understanding of pH as a driving force in cancer therapeutics.

J Mater Chem B

January 2025

Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.

The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.

View Article and Find Full Text PDF

In this paper, a series of novel quinazoline-4(3)-one-2-carbothioamide derivatives (8a-p) were designed and synthesized the Wilgerodt-Kindler reaction between 2-methylquinazoline-4-one 10 and amines using S/DMSO as the oxidizing system. Their characteristics were confirmed by IR, NMR, HRMS spectra, and their melting point. These novel derivatives (8a-p) were evaluated for their anti-inflammatory activity by inhibiting NO production in lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Purpose: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment.

View Article and Find Full Text PDF

Graphene oxide scaffolds promote functional improvements mediated by scaffold-invading axons in thoracic transected rats.

Bioact Mater

May 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.

Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!