Integrative cancer care (ICC) is the treatment of patients with cancer, under physician supervision, with appropriate conventional treatments in a healing context based on insights from research on nutrition, biochemistry, exercise, and psycho-oncology. It uses validated techniques and practitioners of complementary and alternative medicine (CAM), and strategies for enhancing treatment and side-effect management such as chronomodulated chemotherapy, therapies to reduce treatment resistance, and innovative assessments for individualizing treatment plans. The elements of ICC align well with the concepts of optimal healing environments (OHE). Expectations of well-being are fostered; transformative self-care practices are common therapeutic tools; development of healing presence among staff and therapeutic alliances with patients are emphasized; instruction in health-promoting behavior is standard; and collaborative integration of CAM in the practice is typical. Based on the authors' clinical experience, an OHE for patients with cancer is described and suggestions for meaningful research are identified.

Download full-text PDF

Source
http://dx.doi.org/10.1089/1075553042245791DOI Listing

Publication Analysis

Top Keywords

optimal healing
8
healing environments
8
patients cancer
8
treatment
5
role optimal
4
healing
4
patients
4
environments patients
4
patients undergoing
4
cancer
4

Similar Publications

: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.

View Article and Find Full Text PDF

Application of Light-Responsive Nanomaterials in Bone Tissue Engineering.

Pharmaceutics

January 2025

Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201300, China.

The application of light-responsive nanomaterials (LRNs) in bone tissue engineering shows broad prospects, especially in promoting bone healing and regeneration. With a deeper understanding of the mechanisms of bone defects and healing disorders, LRNs are receiving increasing attention due to their non-invasive, controllable, and efficient properties. These materials can regulate cellular biological reactions and promote bone cell adhesion, proliferation, and differentiation by absorbing specific wavelengths of light and converting them into physical and chemical signals.

View Article and Find Full Text PDF

Resins are complex mixtures of natural constituents containing non-volatile and volatile terpenes, in combination with gums and polyphenols, used since ancient times for their medicinal properties. Current research has evidenced their therapeutic value with a plethora of activities. The main limits of resins and their constituents for their clinical use are low water solubility, poor stability and bioavailability.

View Article and Find Full Text PDF

Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.

View Article and Find Full Text PDF

Multifunctional Biological Performance of Electrospun PCL Scaffolds Formulated with Silver Sulfide Nanoparticles.

Polymers (Basel)

January 2025

Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.

Our work describes the green synthesis of silver sulfide nanoparticles (AgS NPs) and their formulation into polycaprolactone fibers (PCL), aiming to improve the multifunctional biological performance of PCL membranes as scaffolds. For this purpose, an extract of rosemary () was employed as a reducing agent for the AgS NPs, obtaining irregular NPs and clusters of 5-60 nm, with a characteristic SPR absorption at 369 nm. AgS was successfully incorporated into PCL fibers by electrospinning using heparin (HEP) as a stabilizer/biocompatibility agent, obtaining nanostructured fibers with a ca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!