We previously demonstrated that FVIIa bound to tissue factor (TF) induces a hyperchemotactic response towards PDGF-BB. The aim of the present study was to investigate the role of the cytoplasmic domain of TF in cell migration. Porcine aortic endothelial (PAE) cells expressing human PDGF beta-receptors (PAE/PDGFRbeta) were transfected for expression of human wildtype TF (PAE/PDGFRbeta,TF), a construct lacking the cytoplasmic domain (PAE/PDGFRbeta,TFDeltacyto), a construct with alanine replacement of serine 258 (PAE/PDGFRbeta,TFS258A), or a construct with alanine replacement of serine 253, 258 and 263 in the cytoplasmic domain (PAE/PDGFRbeta,TF3SA). All stably transfected cell lines expressed functional TF. Chemotaxis was analyzed in a modified Boyden chamber assay. PAE/PDGFRbeta,TF cells stimulated with FVIIa migrated towards a 100-fold lower concentration of PDGF-BB than in the absence of FVIIa, however, hyperchemotaxis was not seen in PAE/PDGFRbeta,TFDeltacyto cells. PAE/PDGFRbeta/TFS258A and PAE/PDGFRbeta,TF3SA cells responded to low levels of PDGF-BB, but migrated a significantly shorter distance than PAE/PDGFRbeta,TF cells. Thus, hyperchemotaxis towards PDGF-BB is likely to depend in part on phosphorylation of the cytoplasmic domain of TF. We conclude that the cytoplasmic domain of TF plays a pivotal role in modulating cellular migration response. Our results suggest that the FVIIa/TF complex mediates intracellular signaling by alternative signal transduction pathway(s).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1160/TH04-07-0405 | DOI Listing |
Front Mol Neurosci
January 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.
View Article and Find Full Text PDFNat Commun
January 2025
College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, China.
Ferroptosis is a form of iron-dependent programmed cell death, which is distinct from apoptosis, necrosis, and autophagy. Mitochondria play a critical role in initiating and amplifying ferroptosis in cancer cells. Voltage-Dependent Anion Channel 1 (VDAC1) embedded in the mitochondrial outer membrane, exerts roles in regulation of ferroptosis.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Biol Cell
January 2025
CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.
Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.
View Article and Find Full Text PDFDecades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!