Regulation of chemotaxis by the cytoplasmic domain of tissue factor.

Thromb Haemost

Department of Medical Sciences, Clinical Chemistry, Akademiska Hospital, S-751 85 Uppsala, Sweden.

Published: January 2005

We previously demonstrated that FVIIa bound to tissue factor (TF) induces a hyperchemotactic response towards PDGF-BB. The aim of the present study was to investigate the role of the cytoplasmic domain of TF in cell migration. Porcine aortic endothelial (PAE) cells expressing human PDGF beta-receptors (PAE/PDGFRbeta) were transfected for expression of human wildtype TF (PAE/PDGFRbeta,TF), a construct lacking the cytoplasmic domain (PAE/PDGFRbeta,TFDeltacyto), a construct with alanine replacement of serine 258 (PAE/PDGFRbeta,TFS258A), or a construct with alanine replacement of serine 253, 258 and 263 in the cytoplasmic domain (PAE/PDGFRbeta,TF3SA). All stably transfected cell lines expressed functional TF. Chemotaxis was analyzed in a modified Boyden chamber assay. PAE/PDGFRbeta,TF cells stimulated with FVIIa migrated towards a 100-fold lower concentration of PDGF-BB than in the absence of FVIIa, however, hyperchemotaxis was not seen in PAE/PDGFRbeta,TFDeltacyto cells. PAE/PDGFRbeta/TFS258A and PAE/PDGFRbeta,TF3SA cells responded to low levels of PDGF-BB, but migrated a significantly shorter distance than PAE/PDGFRbeta,TF cells. Thus, hyperchemotaxis towards PDGF-BB is likely to depend in part on phosphorylation of the cytoplasmic domain of TF. We conclude that the cytoplasmic domain of TF plays a pivotal role in modulating cellular migration response. Our results suggest that the FVIIa/TF complex mediates intracellular signaling by alternative signal transduction pathway(s).

Download full-text PDF

Source
http://dx.doi.org/10.1160/TH04-07-0405DOI Listing

Publication Analysis

Top Keywords

cytoplasmic domain
24
tissue factor
8
construct alanine
8
alanine replacement
8
replacement serine
8
pae/pdgfrbetatf cells
8
cytoplasmic
6
domain
6
cells
5
regulation chemotaxis
4

Similar Publications

Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.

View Article and Find Full Text PDF

Ferroptosis is a form of iron-dependent programmed cell death, which is distinct from apoptosis, necrosis, and autophagy. Mitochondria play a critical role in initiating and amplifying ferroptosis in cancer cells. Voltage-Dependent Anion Channel 1 (VDAC1) embedded in the mitochondrial outer membrane, exerts roles in regulation of ferroptosis.

View Article and Find Full Text PDF
Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

Flotillins in membrane trafficking and physiopathology.

Biol Cell

January 2025

CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.

Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.

View Article and Find Full Text PDF

Decades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!