The influence of artificial scotomas on eye movements during visual search.

Optom Vis Sci

Laboratory for Experimental Ophthalmology, School for Behavioral and Cognitive Neurosciences, University of Groningen, The Netherlands.

Published: January 2005

Purpose: Fixation durations are normally adapted to the difficulty of the foveal analysis task. We examine to what extent artificial central and peripheral visual field defects interfere with this adaptation process.

Methods: Subjects performed a visual search task while their eye movements were registered. The latter were used to drive a real-time gaze-dependent display that was used to create artificial central and peripheral visual field defects. Recorded eye movements were used to determine saccadic amplitude, number of fixations, fixation durations, return saccades, and changes in saccade direction.

Results: For central defects, although fixation duration increased with the size of the absolute central scotoma, this increase was too small to keep recognition performance optimal, evident from an associated increase in the rate of return saccades. Providing a relatively small amount of visual information in the central scotoma did substantially reduce subjects' search times but not their fixation durations. Surprisingly, reducing the size of the tunnel also prolonged fixation duration for peripheral defects. This manipulation also decreased the rate of return saccades, suggesting that the fixations were prolonged beyond the duration required by the foveal task.

Conclusions: Although we find that adaptation of fixation duration to task difficulty clearly occurs in the presence of artificial scotomas, we also find that such field defects may render the adaptation suboptimal for the task at hand. Thus, visual field defects may not only hinder vision by limiting what the subject sees of the environment but also by limiting the visual system's ability to program efficient eye movements. We speculate this is because of how visual field defects bias the balance between saccade generation and fixation stabilization.

Download full-text PDF

Source

Publication Analysis

Top Keywords

field defects
20
eye movements
16
visual field
16
fixation durations
12
return saccades
12
fixation duration
12
artificial scotomas
8
visual
8
visual search
8
artificial central
8

Similar Publications

Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies.

Oncogene

January 2025

Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.

Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients.

View Article and Find Full Text PDF

Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and variability across different systems, diagnosing abnormalities in ultrasound images is particularly challenging for less experienced clinicians. The development of artificial intelligence (AI) technology could assist in the diagnosis of ultrasound images.

View Article and Find Full Text PDF

Clinical features, diagnosis, management, and prognosis of circumscribed choroidal hemangioma.

Surv Ophthalmol

January 2025

Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China. Electronic address:

Because of its benign nature and rarity, circumscribed choroidal hemangioma (CCH) often receives limited attention, leading to a high rate of misdiagnosis and a lack of standardized treatment protocols. We provide a thorough clarification of the demographics, clinical features, diagnosis, management, and prognosis of CCH. We conducted a systematic search of the PubMed, EMBASE, and Ovid databases up to December, 2023, to identify relevant studies.

View Article and Find Full Text PDF

Two-in-one strategy to enhance the stability of TiCT in transition metal ion solutions.

J Colloid Interface Sci

January 2025

College of Materials Science and Engineering, Hunan University, Changsha 410082 PR China. Electronic address:

Although MXenes have attracted significant attention across diverse fields, they exhibit a pronounced susceptibility to oxidation in aqueous environments, with oxidation significantly accelerated in the presence of transition metal ions (TMI) such as Fe and Cu. This limitation impedes the synthesis of transition metal compounds/MXene-based composites and their potential for functional applications. In this study, we elucidate the mechanism of accelerated oxidation of TiCT is that Fe promotes the electron loss in TiCT, thus leading to an increased production of hydroxyl radicals (OH) to oxidize TiCT.

View Article and Find Full Text PDF

Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!