Oxidative stress is the master operator of drug and chemically-induced programmed and unprogrammed cell death: Implications of natural antioxidants in vivo.

Biofactors

Molecular Toxicology Program, Department of Pharmacology, Toxicology & Medicinal Chemistry, Arnold and Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, Brooklyn, NY 11201, USA.

Published: April 2005

ROS, RNS, BRIs and ROS-RNS hybrids are produced during drug or chemical metabolism in vivo. These reactive species are instrumental to the culmination of cellular oxidative stress (OS). OS, once turned on, does not spare any vital intracellular macromolecule, such as glutathione, DNA, RNA, proteins, enzymes, lipids and ATP. Since concentration gradients of such components are very delicately balanced for normal cellular functioning, a gross perturbation leads to cell injury and cell death. Abundant evidence now suggests that intracellular antioxidants keep OS in check and maintain homeostasis. Our laboratory has focused on the role of OS in orchestrating various forms of cell death during drug and chemically-induced target organ toxicity and their counteraction by various natural or synthetic antioxidants in in vivo models. Despite complexity of the in vivo models, results show that metabolism of xenobiotics are invariably associated with different degrees of OS and natural antioxidants such as grape seed extract, bitter melon extract (Momordica charantia) and N-acetylcysteine (NAC) which were very effective in counteracting organ toxicities by minimizing events linked to OS (lipid peroxidation and total glutathione), and CAD-mediated DNA fragmentation. Phytoextract exposure rescued cells from toxic assaults, protected genomic integrity, and minimized apoptotic, necrotic and apocrotic (oncotic necrosis) cell deaths. Pre-exposure mode was more effective than post-exposure route. Overall scenario suggests that OS may have been the prime modulator of death and/or survival programs, whereas, antioxidants may have imparted a dual role in either erasing death signals or reviving survival signals, and a combination of antioxidants may be more beneficial than a single entity to influence a number of intracellular events operating simultaneously to neutralize chaotic toxicological consequences.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biof.552210144DOI Listing

Publication Analysis

Top Keywords

cell death
12
oxidative stress
8
drug chemically-induced
8
natural antioxidants
8
antioxidants vivo
8
vivo models
8
antioxidants
6
cell
5
death
5
stress master
4

Similar Publications

Inducers of Autophagy and Cell Death: Focus on Copper Metabolism.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:

Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.

View Article and Find Full Text PDF

Mitochondrial Mayhem: How cigarette smoke induces placental dysfunction through MMS19 degradation.

Ecotoxicol Environ Saf

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:

Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.

View Article and Find Full Text PDF

Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.

Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Primary hepatocellular carcinoma (PHC) is the sixth most common cancer and the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) accounts for 75%-85% of PHC. LARP3 is aberrantly expressed in multiple cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!