Redox regulation of nerve growth factor-induced neuronal differentiation of PC12 cells through modulation of the nerve growth factor receptor, TrkA.

Arch Biochem Biophys

Department of Life Science, Graduate School of Science, University of Hyogo, Khoto 3-2-1, Kamigori-chou, Ako-gun, Hyogo, 678-1297, Japan.

Published: February 2005

We investigated the effects of the cellular redox state on nerve growth factor (NGF)-induced neuronal differentiation and its signaling pathways. Treatment of PC12 cells with buthionine sulfoximine (BSO) reduced the levels of GSH, a major cellular reductant, and enhanced NGF-induced neuronal differentiation, activation of AP-1 and the NGF receptor tyrosine kinase, TrkA. Conversely, incubation of the cells with a reductant, N-acetyl-L-cysteine (NAC), inhibited NGF-induced neuronal differentiation and AP-1 activation. Consistent with the suppression, NAC inhibited NGF-induced activation of TrkA, formation of receptor complexes comprising TrkA, Shc, Grb2, and Sos, and activation of phospholipase Cgamma and phosphatidylinositol 3-kinase. Biochemical analysis suggested that the cellular redox state regulates TrkA activity through modulation of protein tyrosine phosphatases (PTPs). Thus, cellular redox state regulates signaling pathway of NGF through PTPs, and then modulates neuronal differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2004.07.036DOI Listing

Publication Analysis

Top Keywords

neuronal differentiation
20
nerve growth
12
cellular redox
12
redox state
12
ngf-induced neuronal
12
pc12 cells
8
growth factor
8
nac inhibited
8
inhibited ngf-induced
8
state regulates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!