We investigated the effects of the cellular redox state on nerve growth factor (NGF)-induced neuronal differentiation and its signaling pathways. Treatment of PC12 cells with buthionine sulfoximine (BSO) reduced the levels of GSH, a major cellular reductant, and enhanced NGF-induced neuronal differentiation, activation of AP-1 and the NGF receptor tyrosine kinase, TrkA. Conversely, incubation of the cells with a reductant, N-acetyl-L-cysteine (NAC), inhibited NGF-induced neuronal differentiation and AP-1 activation. Consistent with the suppression, NAC inhibited NGF-induced activation of TrkA, formation of receptor complexes comprising TrkA, Shc, Grb2, and Sos, and activation of phospholipase Cgamma and phosphatidylinositol 3-kinase. Biochemical analysis suggested that the cellular redox state regulates TrkA activity through modulation of protein tyrosine phosphatases (PTPs). Thus, cellular redox state regulates signaling pathway of NGF through PTPs, and then modulates neuronal differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2004.07.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!