The effect of low molecular-weight compounds on the equilibrium constant K(A) can be used to explore the energetics and molecular mechanism of protein-DNA interactions. Here we use the complex composed of the integrase Tn916 DNA-binding domain and its target DNA duplex to investigate the effects of salt and the nonionic osmolytes glycerol and sorbitol on sequence-specific protein-DNA association. Increasing Na(+) concentration from 0.12 to 0.32 M weakens the binding affinity by a factor of 20. The decrease of affinity is dominated by a large loss of binding enthalpy but only a small loss of binding entropy. This contrasts the concept that the salt-induced weakening of protein-DNA binding is mainly entropic. The large enthalpy loss is discussed in the light of recent views about the nature of the general salt effect. Addition of up to 2.5 M sorbitol and up to 3.3 M glycerol causes a slight increase of the binding affinity. However, both osmolytes lead to a large enthalpy gain and a similarly large entropy loss. This intriguing enthalpy-entropy compensation can be explained in part by an enthalpic chelate effect: The osmolyte tightens the structure of the protein-DNA complex whereby the formation of enthalpically favorable noncovalent interactions is promoted at the entropic cost of a more rigid complex. The results were obtained by isothermal titration calorimetry. They are supported by kinetic experiments showing that the rate of formation of the complex is reduced by salt, but the rate of complex dissociation is not. Glycerol and sorbitol reduce both rates in line with an only small effect on complex stability. This work clarifies the thermodynamic and kinetic response of a novel protein-DNA complex to increased salt and the presence of two common, nonionic osmolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi048907nDOI Listing

Publication Analysis

Top Keywords

effects salt
8
protein-dna association
8
complex
8
nonionic osmolytes
8
glycerol sorbitol
8
binding affinity
8
loss binding
8
large enthalpy
8
protein-dna complex
8
protein-dna
6

Similar Publications

Introduction: Thermal ablative methods (such as argon plasma coagulation (APC) and soft tip snare coagulation (STSC) are commonly used to treat polyp margins. We aim to appraise the current literature and compare clinical outcomes between patients with treated (with APC vs. STSC) and non-treated endoscopic mucosal resection (EMR) margins.

View Article and Find Full Text PDF

Introduction: Patients with cerebral hemorrhage often require a tracheal intubation to protect the airway and maintain oxygenation. Due to the use of analgesic and sedative drugs during endotracheal intubation and the opening of the glottis may easily cause aspiration pneumonia. Ceftriaxone is a semi-synthetic third-generation cephalosporin with strong antimicrobial activity against most gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Heart remodelling affects ECG in rat DOCA/salt model.

Physiol Res

December 2024

Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Myocardial remodelling involves structural and functional changes in the heart, potentially leading to heart failure. The deoxycorticosterone acetate (DOCA)/salt model is a widely used experimental approach to study hypertension-induced cardiac remodelling. It allows to investigate the mechanisms underlying myocardial fibrosis and hypertrophy, which are key contributors to impaired cardiac function.

View Article and Find Full Text PDF

Purpose: To evaluate the effect of subconjunctival injection of dexpanthenol on corneal neovascularization and inflammation in rats with induced chemical burns.

Methods: This experimental study included 40 female albino Wistar rats. Chemical burns were induced in the right eye of all rats on the first day, and the left eye was used as a control.

View Article and Find Full Text PDF

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!