A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Redox potential and equilibria in the reductive half-reaction of Vibrio harveyi NADPH-FMN oxidoreductase. | LitMetric

Redox potential and equilibria in the reductive half-reaction of Vibrio harveyi NADPH-FMN oxidoreductase.

Biochemistry

Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA.

Published: January 2005

Vibrio harveyi NADPH:FMN oxidoreductase P (FRP(Vh)) is a homodimeric enzyme having a bound FMN per enzyme monomer. The bound FMN functions as a cofactor of FRP(Vh) in transferring reducing equivalents from NADPH to a flavin substrate in the absence of V. harveyi luciferase but as a substrate for FRP(Vh) in the luciferase-coupled bioluminescent reaction. As part of an integral plan to elucidate the regulation of functional coupling between FRP(Vh) and luciferase, this study was carried out to characterize the equilibrium bindings, reductive potential, and the reversibility of the reduction of the bound FMN in the reductive half-reaction of FRP(Vh). Results indicate that, in addition to NADPH binding, NADP(+) also bound to FRP(Vh) in either the oxidized (K(d) 180 microM) or reduced (K(d) 230 microM) form. By titrations with NADP(+) and NADPH and by an isotope exchange experiment, the reduction of the bound FMN by NADPH was found to be readily reversible (K(eq) = 0.8). Hence, the reduction of FRP(Vh)-bound FMN is not the committed step in coupling the NADPH oxidation to bioluminescence. To our knowledge, such an aspect of flavin reductase catalysis has only been clearly established for FRP(Vh). Although the reductive potentials and some other properties of a R203A variant of FRP(Vh) and an NADH/NADPH-utilizing flavin reductase from Vibrio fischeri are quite similar to that of the wild-type FRP(Vh), the reversal of the reduction of bound FMN was not detected for either of these two enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi047952sDOI Listing

Publication Analysis

Top Keywords

bound fmn
20
reduction bound
12
frpvh
9
reductive half-reaction
8
vibrio harveyi
8
flavin reductase
8
bound
6
fmn
6
nadph
5
redox potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!