Myosin II molecules assemble and form filaments through their C-terminal rod region, and the dynamic filament assembly-disassembly process of nonmuscle myosin II molecules is important for cellular activities. To estimate the critical region for filament formation of vertebrate nonmuscle myosin II, we assessed the solubility of a series of truncated recombinant rod fragments of nonmuscle myosin IIB at various concentrations of NaCl. A C-terminal 248-residue rod fragment (Asp 1729-Glu 1976) was shown by its solubility behavior to retain native assembly features, and two regions within it were found to be necessary for assembly: 35 amino acid residues from Asp 1729 to Thr 1763 and 39 amino acid residues from Ala 1875 to Ala 1913, the latter containing a sequence similar to the assembly competence domain (ACD) of skeletal muscle myosin. Fragments lacking either of the two regions were soluble at any NaCl concentration. We referred to these two regions as nonmuscle myosin ACD1 (nACD1) and nACD2, respectively. In addition, we constructed an alpha-helical coiled-coil model of the rod fragment, and found that a remarkable negative charge cluster (termed N1) and a positive charge cluster (termed P2) were present within nACD1 and nACD2, respectively, besides another positive charge cluster (termed P1) in the amino-terminal vicinity of nACD2. From these results, we propose two major electrostatic interactions that are essential for filament formation of nonmuscle myosin II: the antiparallel interaction between P2 and N1 which is essential for the nucleation step and the parallel interaction between P1 and N1 which is important for the elongation step.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi048807hDOI Listing

Publication Analysis

Top Keywords

nonmuscle myosin
24
charge cluster
12
cluster termed
12
regions assembly
8
vertebrate nonmuscle
8
myosin
8
myosin molecules
8
filament formation
8
rod fragment
8
amino acid
8

Similar Publications

Background: Myosin Heavy Chain 9-related diseases (MYH9-RD) are rare autosomal dominant platelet disorders characterised by macrothrombocytopaenia and leukocyte inclusion bodies. They can manifest with non-haematological complications, including deafness, nephropathy, or cataracts. Due to its rarity and its similar clinical presentation with immune thrombocytopaenia (ITP), MYH9-RD is often misdiagnosed as ITP, leading to inappropriate treatment and delayed management of complications.

View Article and Find Full Text PDF

Amoeboid cells undergo durotaxis with soft end polarized NMIIA.

Elife

December 2024

Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient.

View Article and Find Full Text PDF

Axons are ultrathin membrane cables that are specialized for the conduction of action potentials. Although their diameter is variable along their length, how their morphology is determined is unclear. Here, we demonstrate that unmyelinated axons of the mouse central nervous system have nonsynaptic, nanoscopic varicosities ~200 nm in diameter repeatedly along their length interspersed with a thin cable ~60 nm in diameter like pearls-on-a-string.

View Article and Find Full Text PDF

Background: Pathogenic variants in the nonmuscle myosin, MYH14, have been associated with several pathologic conditions including a complex phenotype with peripheral neuropathy, myopathy, hoarseness, and hearing loss. Since its first description in a large Korean kindred, this rare neuromuscular disorder has further been characterized in 1 American and 1 Canadian pedigree.

Case Presentation: Here, we describe a German patient with atypical MYH14-related neuromuscular disorder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!