Substitution of Leu290 by Phe (L290F) in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from the unicellular green alga Chlamydomonas reinhardtii causes a 13% decrease in CO(2)/O(2) specificity and reduced thermal stability. Genetic selection for restored photosynthesis at the restrictive temperature identified an Ala222 to Thr (A222T) substitution that suppresses the deleterious effects of the original mutant substitution to produce a revertant enzyme with improved thermal stability and kinetic properties virtually indistinguishable from that of the wild-type enzyme. Because the mutated residues are situated approximately 19 A away from the active site, they must affect the relative rates of carboxylation and oxygenation in an indirect way. As a means for elucidating the role of such distant interactions in Rubisco catalysis and stability, we have determined the crystal structures of the L290F mutant and L290F/A222T revertant enzymes to 2.30 and 2.05 A resolution, respectively. Inspection of the structures reveals that the mutant residues interact via van der Waals contacts within the same large subunit (intrasubunit path, 15.2 A Calpha-Calpha) and also via a path involving a neighboring small subunit (intersubunit path, 18.7 A Calpha-Calpha). Structural analysis of the mutant enzymes identified regions (residues 50-72 of the small subunit and residues 161-164 and 259-264 of the large subunit) that show significant and systematically increased atomic temperature factors in the L290F mutant enzyme compared to wild type. These regions coincide with residues on the interaction paths between the L290F mutant and A222T suppressor sites and could explain the temperature-conditional phenotype of the L290F mutant strain. This suggests that alterations in subunit interactions will influence protein dynamics and, thereby, affect catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi047928eDOI Listing

Publication Analysis

Top Keywords

l290f mutant
16
large subunit
12
crystal structures
8
ribulose-15-bisphosphate carboxylase/oxygenase
8
thermal stability
8
small subunit
8
mutant
7
subunit
6
l290f
5
residues
5

Similar Publications

In the green alga Chlamydomonas reinhardtii, an L290F substitution in the chloroplast-encoded large-subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) causes decreases in carboxylation Vmax, CO2/O2 specificity, and thermal stability. Analysis of photosynthesis-competent revertants selected at the 35 degrees C restrictive temperature identified a rare C65S suppressor substitution in the nuclear-encoded small subunit. C65S enhances catalysis and CO2/O2 specificity in the absence of other wild-type small subunits, and restores thermal stability in vivo.

View Article and Find Full Text PDF

Substitution of Leu290 by Phe (L290F) in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from the unicellular green alga Chlamydomonas reinhardtii causes a 13% decrease in CO(2)/O(2) specificity and reduced thermal stability. Genetic selection for restored photosynthesis at the restrictive temperature identified an Ala222 to Thr (A222T) substitution that suppresses the deleterious effects of the original mutant substitution to produce a revertant enzyme with improved thermal stability and kinetic properties virtually indistinguishable from that of the wild-type enzyme. Because the mutated residues are situated approximately 19 A away from the active site, they must affect the relative rates of carboxylation and oxygenation in an indirect way.

View Article and Find Full Text PDF

In the green alga Chlamydomonas reinhardtii, a Leu(290)-to-Phe (L290F) substitution in the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco), which is coded by the chloroplast rbcL gene, was previously found to be suppressed by second-site Ala(222)-to-Thr and Val(262)-to-Leu substitutions. These substitutions complement the photosynthesis deficiency of the L290F mutant by restoring the decreased thermal stability, catalytic efficiency, and CO(2)/O(2) specificity of the mutant enzyme back to wild-type values. Because residues 222, 262, and 290 interact with the loop between beta strands A and B of the Rubisco small subunit, which is coded by RbcS1 and RbcS2 nuclear genes, it seemed possible that substitutions in this loop might also suppress L290F.

View Article and Find Full Text PDF

A temperature-conditional, photosynthesis-deficient mutant of the green alga Chlamydomonas reinhardtii, previously recovered by genetic screening, results from a leucine 290 to phenylalanine (L290F) substitution in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC ). Rubisco purified from mutant cells grown at 25 degrees C has a reduction in CO(2)/O(2) specificity and is inactivated at lower temperatures than those that inactivate the wild-type enzyme. Second-site alanine 222 to threonine (A222T) or valine 262 to leucine (V262L) substitutions were previously isolated via genetic selection for photosynthetic ability at the 35 degrees C restrictive temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!