The molecular mechanisms underlying the relationship between low-density lipoprotein (LDL) and the risk of atherosclerosis are not clear. Therefore, detailed information about the protein composition of LDL may contribute to reveal its role in atherogenesis and the mechanisms that lead to coronary disease in humans. Here, we sought to map the proteins in human LDL by a proteomic approach. LDL was isolated by two-step discontinuous density-gradient ultracentrifugation and the proteins were separated with two-dimensional gel electrophoresis and identified with peptide mass fingerprinting, using matrix assisted laser desorption/ionization-time of flight-mass spectrometry and with amino acid sequencing using electrospray ionization tandem mass spectrometry. These procedures identified apo B-100, apo C-II, apo C-III (three isoforms), apo E (four isoforms), apo A-I (two isoforms), apo A-IV, apo J and apo M (three isoforms not previously described). In addition, three proteins that have not previously been identified in LDL were found: serum amyloid A-IV (two isoforms), calgranulin A, and lysozyme C. The identities of apo M, calgranulin A, and lysozyme C were confirmed by sequence information obtained after collision-induced dissociation fragmentation of peptides characteristic for these proteins. Moreover, the presence of lysozyme C was further corroborated by demonstrating enriched hydrolytic activity in LDL against Micrococcus lysodeikticus. These results indicate that in addition to the dominating apo B-100, LDL contains a number of other apolipoproteins, many of which occur in different isoforms. The demonstration, for the first time, that LDL contains calgranulin A and lysozyme C raises the possibility that LDL proteins may play hitherto unknown role(s) in immune and inflammatory reactions of the arterial wall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.200300938 | DOI Listing |
In the central nervous system, apolipoprotein (APO) E-containing high-density lipoprotein (HDL)-like particles mediate the transport of glial-derived cholesterol to neurons, which is essential for neuronal membrane remodeling and maintenance of the myelin sheath. Despite this, the role of HDL-like cholesterol trafficking on Alzheimer's disease (AD) pathogenesis remains poorly understood. We aimed to examine cholesterol transport via HDL-like particles in cerebrospinal fluid (CSF) of AD patients compared to control individuals.
View Article and Find Full Text PDFJ Lipid Res
December 2024
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA 46285. Electronic address:
FEBS J
December 2024
Department of Chemistry, University of Western Ontario, London, Canada.
J Intern Med
December 2024
Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
Background: Lipoprotein(a) (Lp(a)) is a causal, genetically determined risk factor for cardiovascular disease (CVD) in the general population. Patients with chronic kidney disease (CKD) have an increased CVD risk and elevated Lp(a) concentrations. Only a few studies on Lp(a) were performed in persons with mild-to-moderate CKD; none of them used genetic variants to explore potential causal associations.
View Article and Find Full Text PDFProteins
October 2024
Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece.
SR/RS dipeptide repeats vary in both length and position, and are phosphorylated by SR protein kinases (SRPKs). PIM-1L, the long isoform of PIM-1 kinase, the splicing of which has been implicated in acute myeloid leukemia, contains a domain that consists largely of repeating SR/RS and SH/HS dipeptides (SR/SH-rich). In order to extend our knowledge on the specificity and cellular functions of SRPK1, here we investigate whether PIM-1L could act as substrate of SRPK1 by a combination of biochemical and computational approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!