Lignin, one of the main components in vascular plants, is important for the adaptation of terrestrial plants to environment during evolution. However, its presence in plants has negative effects on wood processing during pulping and stock breeding. Therefore much attention has been focused on the regulation of lignin biosynthesis. The pathways leading to the synthesis of lignin polymers have been studied for decades. Much understanding of lignin biosynthesis has been advanced. This paper reviewed the recent progress made in the various steps associated with monolignol biosynthesis. It includes the catalysis by three enzymes, i.e. p-coumarate-3-hydroxylase (C3H), ferulate-5-hydroxylase (F5H) and caffeic acid 3-O-methyltransferase (COMT); the multiform biosynthetic pathway of syringyl (S) lignin in angiosperms; the biosynthesis route of guaiacyl (G) and syringyl (S) lignin specifically regulated by cinnamyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD) and the formation of the lignin macromolecule. Based on the elucidation of lignin biosynthesis pathway, it has also been given the achievements in lignin gene engineering. Many studies were concentrated on the modification of lignin content and composition. In some cases, the potential value of transgenic plants with modified lignin beneficial for pulping has been demonstrated. To better understand the mechanism of lignin biosynthesis and improve the properties of plants, new biotechnological strategies can be developed, which include combinatorial modification of multiple lignin traits in plants through multigene cotransformation, transcriptional control of lignin biosynthesis and the application of RNA interference. The identification of novel genes by molecular and genetic approaches will be useful in opening up new avenues of lignin modification in the future.
Download full-text PDF |
Source |
---|
NPJ Biofilms Microbiomes
January 2025
School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.
Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.
View Article and Find Full Text PDFISME Commun
January 2024
BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China. Electronic address:
Gibberellins (GAs) are a group of diterpene plant hormones that regulates various plant developmental processes, including wood formation. Nevertheless, the regulatory pattern and the downstream targets of GA in the regulation of xylem expansion and cell lignification in woody plants remains unclear. In transgenic Jatropha curcas with significantly increased or decreased bioactive GA content via separate overexpression of JcGA20ox1 or JcGA2ox6, comparative transcriptomic, metabolomic and physiological investigations were conducted on the young stems.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.
Background: Mutualistic mycorrhiza fungi that live in symbiosis with plants facilitates nutrient and water acquisition, improving tree growth and performance. In this study, we evaluated the potential of mutualistic fungal inoculation to improve the growth and disease resistance of Scots pine (Pinus sylvestris L.) against the forest pathogen Heterobasidion annosum.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!