[Advances in research on lignin biosynthesis and its genetic engineering].

Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao

Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

Published: August 2004

Lignin, one of the main components in vascular plants, is important for the adaptation of terrestrial plants to environment during evolution. However, its presence in plants has negative effects on wood processing during pulping and stock breeding. Therefore much attention has been focused on the regulation of lignin biosynthesis. The pathways leading to the synthesis of lignin polymers have been studied for decades. Much understanding of lignin biosynthesis has been advanced. This paper reviewed the recent progress made in the various steps associated with monolignol biosynthesis. It includes the catalysis by three enzymes, i.e. p-coumarate-3-hydroxylase (C3H), ferulate-5-hydroxylase (F5H) and caffeic acid 3-O-methyltransferase (COMT); the multiform biosynthetic pathway of syringyl (S) lignin in angiosperms; the biosynthesis route of guaiacyl (G) and syringyl (S) lignin specifically regulated by cinnamyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD) and the formation of the lignin macromolecule. Based on the elucidation of lignin biosynthesis pathway, it has also been given the achievements in lignin gene engineering. Many studies were concentrated on the modification of lignin content and composition. In some cases, the potential value of transgenic plants with modified lignin beneficial for pulping has been demonstrated. To better understand the mechanism of lignin biosynthesis and improve the properties of plants, new biotechnological strategies can be developed, which include combinatorial modification of multiple lignin traits in plants through multigene cotransformation, transcriptional control of lignin biosynthesis and the application of RNA interference. The identification of novel genes by molecular and genetic approaches will be useful in opening up new avenues of lignin modification in the future.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lignin biosynthesis
24
lignin
15
biosynthesis
8
syringyl lignin
8
alcohol dehydrogenase
8
plants
6
[advances lignin
4
biosynthesis genetic
4
genetic engineering]
4
engineering] lignin
4

Similar Publications

Depth heterogeneity of lignin-degrading microbiome and organic carbon processing in mangrove sediments.

NPJ Biofilms Microbiomes

January 2025

School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.

Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.

View Article and Find Full Text PDF

The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.

View Article and Find Full Text PDF

Gibberellin promotes xylem expansion and cell lignification by regulating sugar accumulation and the expression of JcMYB43 and JcMYB63 in the woody plant Jatropha curcas.

Int J Biol Macromol

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China. Electronic address:

Gibberellins (GAs) are a group of diterpene plant hormones that regulates various plant developmental processes, including wood formation. Nevertheless, the regulatory pattern and the downstream targets of GA in the regulation of xylem expansion and cell lignification in woody plants remains unclear. In transgenic Jatropha curcas with significantly increased or decreased bioactive GA content via separate overexpression of JcGA20ox1 or JcGA2ox6, comparative transcriptomic, metabolomic and physiological investigations were conducted on the young stems.

View Article and Find Full Text PDF

Beneficial mutualistic fungus Suillus luteus provided excellent buffering insurance in Scots pine defense responses under pathogen challenge at transcriptome level.

BMC Plant Biol

January 2025

Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.

Background: Mutualistic mycorrhiza fungi that live in symbiosis with plants facilitates nutrient and water acquisition, improving tree growth and performance. In this study, we evaluated the potential of mutualistic fungal inoculation to improve the growth and disease resistance of Scots pine (Pinus sylvestris L.) against the forest pathogen Heterobasidion annosum.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the effects of a specific enzyme (FAEA) expressed in maize that targets the apoplast, focusing on its activity during the late stages of plant senescence and after storing the plant material.
  • FAEA levels increased until the reproductive (R) stage but dropped during full leaf senescence (R+), while the enzyme remained stable even after six months of cold storage.
  • The research found that FAEA expression led to decreased cell wall components like ferulates and improved the breakdown (saccharification) of plant material by enzymes, making it easier to extract sugars at later development stages.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!