Upregulation of hypoxia-induced mitogenic factor in compensatory lung growth after pneumonectomy.

Am J Respir Cell Mol Biol

Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 600 N. Wolfe Street, Blalock 1404A, Baltimore, MD 21205, USA.

Published: March 2005

After pneumonectomy, the remaining lung increases in size. This process is referred to as compensatory lung growth. Various pathways likely play important roles in this growth response. The molecular mechanisms involved in compensatory lung growth, however, remain poorly understood. Hypoxia-induced mitogenic factor (HIMF), also called FIZZ1 or RELM-alpha, possesses mitogenic, vasoconstrictive, angiogenic, and antiapoptotic effects. In this study, we examined the expression of HIMF in mouse lung after pneumonectomy to test the hypothesis that HIMF expression is upregulated during compensatory lung growth. Results showed that HIMF is upregulated from Day 1 after pneumonectomy and peaking at Day 7 in the lung. HIMF upregulation is temporally and spatially related to lung cell proliferation, as demonstrated by expression of proliferating cell nuclear antigen. Immunohistochemical staining and in situ hybridization showed that upregulated HIMF protein and mRNA are mainly distributed in airway epithelium, alveolar type II cells, and endothelial cells of the pulmonary vessels. Intratracheal instillation of recombinant HIMF resulted in widespread cell proliferation, including airway epithelium, alveolar type II cells, and cells in the alveolar septa. These results indicate a new role for HIMF in compensatory lung growth, which is that HIMF may act as a lung-specific growth factor and participate in lung regeneration after pneumonectomy.

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2004-0325OCDOI Listing

Publication Analysis

Top Keywords

compensatory lung
20
lung growth
20
lung
10
himf
9
hypoxia-induced mitogenic
8
mitogenic factor
8
growth himf
8
cell proliferation
8
airway epithelium
8
epithelium alveolar
8

Similar Publications

Background: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses.

Methods: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days.

Results: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life.

View Article and Find Full Text PDF

Temporal RAGE Over-Expression Disrupts Lung Development by Modulating Apoptotic Signaling.

Curr Issues Mol Biol

December 2024

Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA.

Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.

View Article and Find Full Text PDF

Purposes: Positron emission tomography (PET) imaging is widely used to detect focal lesions or diseases and to study metabolic abnormalities between organs. However, analyzing organ correlations alone does not fully capture the characteristics of the metabolic network. Our work proposes a graph-based analysis method for quantifying the topological properties of the network, both globally and at the nodal level, to detect systemic or single-organ metabolic abnormalities caused by diseases such as lung cancer.

View Article and Find Full Text PDF

Cytokines reprogram airway sensory neurons in asthma.

Cell Rep

December 2024

Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. Electronic address:

Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential environmental dangers. However, this function can be detrimental during allergic reactions, as vagal nociceptors contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood.

View Article and Find Full Text PDF

Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!