Endothelial cells normally form a dynamically regulated barrier at the blood-tissue interface, and breakdown of this barrier is a key pathogenic factor in inflammatory disorders such as sepsis. Pro-inflammatory signaling by the blood coagulation protease thrombin through protease activated receptor-1 (PAR1) can disrupt endothelial barrier integrity, whereas the bioactive lipid sphingosine 1-phosphate (S1P) recently has been demonstrated to have potent barrier protective effects. Activated protein C (APC) inhibits thrombin generation and has potent anti-inflammatory effects. Here, we show that APC enhanced endothelial barrier integrity in a dual-chamber system dependent on binding to endothelial protein C receptor, activation of PAR1, and activity of cellular sphingosine kinase. Small interfering RNA that targets sphingosine kinase-1 or S1P receptor-1 blocked this protective signaling by APC. Incubation of cells with PAR1 agonist peptide or low concentrations of thrombin (approximately 40 pM) had a similar barrier-enhancing effect. These results demonstrate that PAR1 activation on endothelial cells can have opposite biologic effects, reveal a role for cross-communication between the prototypical barrier-protective S1P and barrier-disruptive PAR1 pathway, and suggest that S1P receptor-1 mediates protective effects of APC in systemic inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2004-10-3985DOI Listing

Publication Analysis

Top Keywords

endothelial barrier
12
activated protein
8
sphingosine 1-phosphate
8
endothelial cells
8
barrier integrity
8
protective effects
8
effects apc
8
s1p receptor-1
8
endothelial
6
barrier
5

Similar Publications

Keratinocytes are the primary component of the epidermis, so maintaining the precise balance between proliferation and differentiation is essential for conserving epidermal structure and function. Rosae multiflorae fructus extract (RMFE) has wide application in the cosmetic industry, but the molecular mechanisms underlying beneficial effects on keratinocytes are still not fully understood. In this study, we found that RMFE promoted epidermal differentiation and enhanced the barrier function of normal human epidermal keratinocytes (NHEKs) and three-dimensional epidermis model in culture.

View Article and Find Full Text PDF

Limiting animal experiments is essential for ethical issues and also because scientific evidence highlights the discrepancies between human and animal metabolism. This review aims to provide a critical discussion of the strengths and limitations of the most appropriate intestine model to answer complex research questions in pharmaceutical and nutraceutical fields. This review describes the components contributing to the definition of the gut barrier structure, from the outer mucus layer to the inner part of lamina propria, including endothelial and neuronal networks.

View Article and Find Full Text PDF

Inflammation and Coagulation in Neurologic and Psychiatric Disorders.

Semin Thromb Hemost

January 2025

Department of Neurology, Sheba Medical Center, Tel Ha'Shomer, Israel.

Coagulation factors are intrinsically expressed in various brain cells, including astrocytes and microglia. Their interaction with the inflammatory system is important for the well-being of the brain, but they are also crucial in the development of many diseases in the brain such as stroke and traumatic brain injury. The cellular effects of coagulation are mediated mainly by protease-activated receptors.

View Article and Find Full Text PDF

Background: Parkinson's Disease (PD) often presents with a compromised blood-brain barrier (BBB), which hyperglycemia may exacerbate. Pericytes, a key cell for BBB integrity, are potential therapeutic targets for neurodegenerative disorders. Few studies have developed 3D PD cell models incorporating neurovascular units (NVU) through the co-culture of human endothelial, pericytes, astrocytes, and SH-SY5Y cells to evaluate BBB impairment and the role of pericytes under hyperglycemic condition.

View Article and Find Full Text PDF

Exosome-loading miR-205: a two-pronged approach to ocular neovascularization therapy.

J Nanobiotechnology

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Pathological neovascularization is a hallmark of many vision-threatening diseases. However, some patients exhibit poor responses to current anti-VEGF therapies due to resistance and limited efficacy. Recent studies have highlighted the roles of noncoding RNAs in various biological processes, paving the way for RNA-based therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!