The L-type Ca(2+) channels Ca(V)1.1 (alpha(1S)) and Ca(V)1.2 (alpha(1C)) share properties of targeting but differ by their mode of coupling to ryanodine receptors in muscle cells. The brain isoform Ca(V)2.1 (alpha(1A)) lacks ryanodine receptor targeting. We studied these three isoforms in myotubes of the alpha(1S)-deficient skeletal muscle cell line GLT under voltage-clamp conditions and estimated the flux of Ca(2+) (Ca(2+) input flux) resulting from Ca(2+) entry and release. Surprisingly, amplitude and kinetics of the input flux were similar for alpha(1C) and alpha(1A) despite a previously reported strong difference in responsiveness to extracellular stimulation. The kinetic flux characteristics of alpha(1C) and alpha(1A) resembled those in alpha(1S)-expressing cells but the contribution of Ca(2+) entry was much larger. alpha(1C) but not alpha(1A)-expressing cells revealed a distinct transient flux component sensitive to sarcoplasmic reticulum depletion by 30 microM cyclopiazonic acid and 10 mM caffeine. This component likely results from synchronized Ca(2+)-induced Ca(2+) release that is absent in alpha(1A)-expressing myotubes. In cells expressing an alpha(1A)-derivative (alpha(1)Aas(1592-clip)) containing the putative targeting sequence of alpha(1S), a similar transient component was noticeable. Yet, it was considerably smaller than in alpha(1C), indicating that the local Ca(2+) entry produced by the chimera is less effective in triggering Ca(2+) release despite similar global Ca(2+) inward current density.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1305232 | PMC |
http://dx.doi.org/10.1529/biophysj.104.051318 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!