Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human beta-defensins comprise a large number of peptides that play a functional role in the innate and adaptive immune system. Recently, clusters of new beta-defensin genes with predominant expression in testicular tissue have been discovered on different chromosomes by bioinformatics. beta-Defensins share a common pattern of three disulfides that are essential for their biological effects. Here we report for the first time the chemical synthesis of the new fully disulfide-bonded beta-defensins hBD-27 and hBD-28, and compare the results with synthetic procedures to obtain the known hBD-2 and hBD-3. While hBD-27 was readily converted into a product with the desired disulfide pattern by oxidative folding, hBD-28 required a selective protective group strategy to introduce the three disulfide bonds. The established synthetic processes were applied to the synthesis of hBD-2, which, like hBD-27, was accessible by oxidative folding, whereas hBD-3 required a selective strategy comparable to hBD-28. Experimental work demonstrated that trityl, acetamidomethyl, and t-butyl are superior to other protection strategies. However, the suitable pairwise arrangement of the protective groups can be different, as shown here for hBD-3 and hBD-28. Determination of the minimum inhibitory concentration against different bacteria revealed that hBD-27, in contrast to other beta-defensins tested, has virtually no antimicrobial activity. Compared to the other peptides tested, hBD-27 showed almost no cytotoxic activity, measured by hemoglobin release of erythrocytes. This might be due to the low positive net charge, which is significantly higher for hBD-2, hBD-3, and hBD-28.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.20193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!