The inhibitory control of pancreatic ductal HCO(3)(-) secretion may be physiologically important in terms of limiting the hydrostatic pressure developed within the ducts and in terms of switching off pancreatic secretion after a meal. Substance P (SP) inhibits secretin-stimulated HCO(3)(-) secretion by modulating a Cl(-)-dependent HCO(3)(-) efflux step at the apical membrane of the duct cell (Hegyi P, Gray MA, and Argent BE. Am J Physiol Cell Physiol 285: C268-C276, 2003). In the present study, we have shown that SP is present in periductal nerves within the guinea pig pancreas, that PKC mediates the effect of SP, and that SP inhibits an anion exchanger on the luminal membrane of the duct cell. Secretin (10 nM) stimulated HCO(3)(-) secretion by sealed, nonperfused, ducts about threefold, and this effect was totally inhibited by SP (20 nM). Phorbol 12,13-dibutyrate (PDBu; 100 nM), an activator of PKC, reduced basal HCO(3)(-) secretion by approximately 40% and totally blocked secretin-stimulated secretion. In addition, bisindolylmaleimide I (1 nM to 1 microM), an inhibitor of PKC, relieved the inhibitory effect of SP on secretin-stimulated HCO(3)(-) secretion and also reversed the inhibitory effect of PDBu. Western blot analysis revealed that guinea pig pancreatic ducts express the alpha-, beta(I)-, delta-, epsilon-, eta-, theta-, zeta-, and mu-isoforms of PKC. In microperfused ducts, luminal H(2)DIDS (0.5 mM) caused intracellular pH to alkalinize and, like SP, inhibited basal and secretin-stimulated HCO(3)(-) secretion. SP did not inhibit secretion further when H(2)DIDS was present in the lumen, suggesting that SP and H(2)DIDS both inhibit the activity of an anion exchanger on the luminal membrane of the duct cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00430.2003 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.
View Article and Find Full Text PDFPhotosynth Res
January 2025
School of Biological Sciences, Washington State University, 406 Abelson Hall, Pullman, WA, 99164, USA.
Phosphoenolpyruvate (PEP) carboxylase (PEPC) has an anaplerotic role in central plant metabolism but also initiates the carbon concentrating mechanism during C photosynthesis. The C PEPC has different binding affinities (K) for PEP (K) and HCO (K), and allosteric regulation by glucose-6-phosphate (G6-P) compared to non-photosynthetic isoforms. These differences are linked to specific changes in amino acids within PEPC.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Department of Anaesthesia & Intensive Care, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India.
Purpose: Perioperative metabolic acidosis negatively affects patient outcomes. Perioperative fluid therapy has a clinically significant effect on acid-base balance. This study was conducted to evaluate the effects of isotonic sodium bicarbonate infusion (ISB) versus balanced crystalloid solution (BCS) on perioperative acid-base balance, in terms of postoperative base excess, among patients undergoing emergency laparotomy for perforation peritonitis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada.
With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability.
View Article and Find Full Text PDFNeuropsychopharmacol Hung
December 2024
Municipal Clinic of Szentendre, Internal Medicine, Szentendre, Hungary.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!