We have previously demonstrated that constant 20 mmHg extracellular pressure increases serum-opsonized latex bead phagocytosis by phorbol 12-myristate 13-acetate (PMA)- differentiated THP-1 macrophages in part by inhibiting focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Because p38 MAPK is activated by physical forces in other cells, we hypothesized that modulation of p38 MAPK might also contribute to the stimulation of macrophage phagocytosis by pressure. We studied phagocytosis in PMA-differentiated THP-1 macrophages, primary human monocytes, and human monocyte-derived macrophages (MDM). p38 MAPK activation was inhibited using SB-203580 or by p38 MAPKalpha small interfering RNA (siRNA). Pressure increased phagocytosis in primary monocytes and MDM as in THP-1 cells. Increased extracellular pressure for 30 min increased phosphorylated p38 MAPK by 46.4 +/- 20.5% in DMSO-treated THP-1 macrophages and by 20.9 +/- 9% in primary monocytes (P < 0.05 each). SB-203580 (20 microM) reduced basal p38 MAPK phosphorylation by 34.7 +/- 2.1% in THP-1 macrophages and prevented pressure activation of p38. p38 MAPKalpha siRNA reduced total p38 MAPK protein by 50-60%. Neither SB-203580 in THP-1 cells and peripheral monocytes nor p38 MAPK siRNA in THP-1 cells affected basal phagocytosis, but each abolished pressure-stimulated phagocytosis. SB-203580 did not affect basal or pressure-reduced FAK activation in THP-1 macrophages, but significantly attenuated the reduction in ERK phosphorylation associated with pressure. p38 MAPKalpha siRNA reduced total FAK protein by 40-50%, and total ERK by 10-15%, but increased phosphorylated ERK 1.4 +/- 0.1-fold. p38 MAPKalpha siRNA transfection did not affect the inhibition of FAK-Y397 phosphorylation by pressure but prevented inhibition of ERK phosphorylation. Changes in extracellular pressure during infection or inflammation regulate macrophage phagocytosis by a FAK-dependent inverse effect on p38 MAPKalpha that might subsequently downregulate ERK.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00543.2004 | DOI Listing |
Food Funct
January 2025
Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
, a potential probiotic for use in food and feed production, can exert anti-aging effects in a strain-specific manner. However, the molecular mechanisms underlying its anti-aging effects remain poorly understood. This study explored the effects of WF2020 (WF2020), isolated from Chinese fermented pickles, on longevity and health and investigated the underlying mechanisms in .
View Article and Find Full Text PDFCurr Eye Res
January 2025
Ophthalmology Department, Peking University People's Hospital, Beijing, China.
Purpose: Chronic inflammation plays an important role in the pathogenesis of choroidal neovascularization (CNV). This study aimed to investigate the effect of the CHF5074, a γ-secretase inhibitor, on angiogenesis in a laser-induced CNV model and elucidate its possible molecular mechanism.
Methods: Male C57/BL6J mice aged between 6 to 8 weeks were employed to set up a laser-induced model of CNV.
Comb Chem High Throughput Screen
January 2025
Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
Introduction: The traditional Chinese medicine formula, Bushen Daozhuo Granules (BSDZG), is used to treat chronic non-bacterial prostatitis (CNP) clinically. However, its mechanism of action is unclear. The aim of our study was to determine the effect of BSDZG on CNP and its underlying mechanisms.
View Article and Find Full Text PDFAim Of The Study: This study investigated the mechanism by which the Postoperative Tongqi Formula (PTQF) treats postoperative ileus (POI) through regulation of the p38 MAPK signaling pathway, Zona occludens 1 (ZO-1) protein, and metabolism.
Methods: The primary components of PTQF were characterized using UHPLC-Q-TOF-MS/MS. The identified compounds subsequently employed network pharmacology to predict the signaling pathways associated with the inflammatory phase of POI.
Neuroscience
January 2025
Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA.
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!