Although potentially implicated in several physiological functions, few functional mutations have been identified in the human 5-hydroxytryptamine (HT)(2B) receptor gene. A heterozygous mutation R393X in the 5-HT(2B) receptor was recently identified in a patient diagnosed with pulmonary hypertension after intake of the anorexigenic dexfenfluramine. Although reported to generate a lack of function, this C terminus-truncated 5-HT(2B) receptor should somehow affect transduction pathways relevant to pulmonary hypertension. In our study, we investigated putative modifications in transduction of the R393X-mutated 5-HT(2B) receptor. In stably transfected cells, we confirmed the loss of inositol 1,4,5-trisphosphate stimulation caused by the G(alphaq) uncoupling, despite conserved ligand affinity between the normal and mutated receptors. We also observed a partial loss of nitric-oxide synthase stimulation. However, the truncated R393X receptor presented 1) a strong gain of efficacy in cell proliferation as assessed by mitogen-activated protein kinase activity and thymidine incorporation, 2) a preferential coupling to G(alpha13) as shown by blocking antiserum, and 3) an apparent lack of internalization upon agonist stimulation as observed by confocal microscopy. This work demonstrates that, in the 5-HT(2B) receptor, the C terminus, including the palmitoylation and phosphorylation sites, is absolutely required for proper transduction and internalization. For the first time, we show that the lack of C terminus can generate a switch of coupling to G(alpha13), a reduced NO synthase activation, and an increase in cell proliferation. All these modifications are relevant in pathophysiological vasoconstriction.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.104.008268DOI Listing

Publication Analysis

Top Keywords

5-ht2b receptor
16
pulmonary hypertension
8
cell proliferation
8
coupling galpha13
8
receptor
7
natural mutation
4
mutation encoding
4
encoding terminus-truncated
4
terminus-truncated 5-hydroxytryptamine
4
5-hydroxytryptamine receptor
4

Similar Publications

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Rigidified nucleoside derivatives with (N)-methanocarba replacement of ribose have been repurposed as peripheral subtype-selective 5-HT serotonin receptor antagonists for heart and lung fibrosis and intestinal/vascular conditions. 4'-Cyano derivative (MRS8209; , 4.27 nM) was 47-fold (human binding, but not rat and mouse) and 724-fold (functionally) selective at 5-HTR, compared to antitarget 5-HTR, and predicted to form a stable receptor complex using docking and molecular dynamics.

View Article and Find Full Text PDF

Rationale: Mescaline is a classical psychedelic compound with a phenylethylamine structure that primarily acts on serotonin 5-HT2A/C receptors, but also binds to 5-HT1A and 5-HT2B receptors. Despite being the first psychedelic ever isolated and synthesized, the precise role of different serotonin receptor subtypes in its behavioral pharmacology is not fully understood.

Objectives: In this study, we aimed to investigate how selective antagonists of 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT1A receptors affect the behavioral changes induced by subcutaneous administration of mescaline (at doses of 10, 20, and 100 mg/kg) in rats.

View Article and Find Full Text PDF

Serotonin-2B receptor (5-HTR) expression and binding in the brain of APP/PS1 transgenic mice and in Alzheimer's disease brain tissue.

Neurosci Lett

January 2025

Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus. Electronic address:

Despite well-documented dysregulation in central serotonergic signaling in Alzheimer's disease (AD), knowledge about the potential involvement of the serotonin-2B receptor (5-HTR) subtype remains sparse. Here, we assessed the levels of 5-HTRs in brain tissue from APP/PS1 transgenic (TG) mice, AD patients, and adult microglial cells. 5-HTR mRNA was measured by RT-qPCR in ageing TG and wild-type (WT) mice, in samples from the middle frontal gyrus of female, AD and control subjects, and in microglia from the cerebral cortex of WT mice.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Serotonin (5-HT) is a biogenic monoamine that acts as a neurotransmitter in the central nervous system and as a paracrine, exocrine, or endocrine messenger in peripheral tissues. In this study, we hypothesized that inhibition of serotonin signaling using 5-HT receptor 2B (HTR2B) inhibitors could potentially impede the progression of CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!