AI Article Synopsis

  • The study aimed to explore the surface complexity of the prefrontal cortex and hemispheric asymmetry in first-episode schizophrenia patients.
  • MRI scans were conducted on three groups: first-episode schizophrenia patients, first-episode affective psychosis patients, and age-matched healthy controls.
  • Results indicated that while there was no significant difference in cortical complexity, schizophrenia patients showed reduced left-right asymmetry compared to healthy controls, suggesting a neurodevelopmental link to the disorder.

Article Abstract

Objective: The purpose of this study was to investigate abnormalities in the surface complexity of the prefrontal cortex and in the hemispheric asymmetry of cortical complexity in first-episode patients with schizophrenia.

Method: An estimate of the surface complexity of the prefrontal cortex was derived from the number of voxels along the boundary between gray matter and CSF. Magnetic resonance imaging scans were acquired from patients with a first episode of schizophrenia (N=17), patients with a first episode of affective psychosis (N=17), and normal comparison subjects (N=17), age-matched within a narrow age range (18-29 years). This study group was the focus of a previous study that showed lower prefrontal cortical volume in patients with schizophrenia.

Results: Prefrontal cortical complexity was not significantly different among the groups. However, the schizophrenia patients differed significantly from the normal comparison subjects in asymmetry, with the schizophrenia patients showing less left-greater-than-right asymmetry in cortical complexity than the comparison subjects.

Conclusions: An abnormal pattern of asymmetry in the prefrontal cortex of first-episode patients with schizophrenia provides evidence for a neurodevelopmental mechanism in the etiology of schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768063PMC
http://dx.doi.org/10.1176/appi.ajp.162.1.65DOI Listing

Publication Analysis

Top Keywords

cortical complexity
16
prefrontal cortical
12
prefrontal cortex
12
complexity first-episode
8
surface complexity
8
complexity prefrontal
8
asymmetry cortical
8
first-episode patients
8
patients episode
8
normal comparison
8

Similar Publications

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

The long-term health of former athletes with a history of multiple concussions and/or repetitive head impact (RHI) exposure has been of growing interest among the public. The true proportion of dementia cases attributable to neurotrauma and the neurobehavioral profile/sequelae of multiple concussion and RHI exposure among athletes has been difficult to determine. Across three exposure paradigms (i.

View Article and Find Full Text PDF

Background: Migraine is the most common complex neurological disorder, affecting over a billion people worldwide. Neurogenic inflammation has long been recognized as a key factor in the pathophysiology of migraine though little research has been directed to investigating whether inflammation is greatest in migraine with aura or without, and whether inflammation is a permanent state in migraine or whether is an event related transitory state. Thus, the primary aim of this single-centre, retrospective study was to explore the potential clinical utility of the Serial Systemic Immune-Inflammatory Indices (SSIIi) as a comparative measure of duration and severity of inflammation derived from routine blood cell counts in migraine patients with aura and no-aura both within an acute inpatient setting and as outpatients.

View Article and Find Full Text PDF

Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease.

Neurobiol Dis

January 2025

Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS).

View Article and Find Full Text PDF

Vinculin haploinsufficiency impairs integrin-mediated costamere remodeling on stiffer microenvironments.

J Mol Cell Cardiol

January 2025

Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:

Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!