Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl-2-transduced endothelial cells.

Proc Natl Acad Sci U S A

Interdepartmental Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.

Published: January 2005

Implants of collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVECs) induce the formation of human endothelial cell (EC)/murine vascular smooth muscle cell (VSMC) chimeric vessels in immunodeficient mice. Microfil casting of the vasculature 60 d after implantation reveals highly branched microvascular networks within the implants that connect with and induce remodeling of conduit vessels arising from the abdominal wall circulation. Approximately 85% of vessels within the implants are lined by Bcl-2-positive human ECs expressing VEGFR1, VEGFR2, and Tie-2, but not integrin alpha(v)beta(3). The human ECs are seated on a well formed human laminin/collagen IV-positive basement membrane, and are surrounded by mouse VSMCs expressing SM-alpha actin, SM myosin, SM22alpha, and calponin, all markers of contractile function. Transmission electron microscopy identified well formed EC-EC junctions, chimeric arterioles with concentric layers of contractile VSMC, chimeric capillaries surrounded by pericytes, and chimeric venules. Bcl-2-HUVEC-lined vessels retain 70-kDa FITC-dextran, but not 3-kDa dextran; local histamine rapidly induces leak of 70-kDa FITC-dextran or India ink. As in skin, TNF induces E-selectin and vascular cell adhesion molecule 1 only on venular ECs, whereas intercellular adhesion molecule-1 is up-regulated on all human ECs. Bcl-2-HUVEC implants are able to engraft within and increase perfusion of ischemic mouse gastrocnemius muscle after femoral artery ligation. These studies show that cultured Bcl-2-HUVECs can differentiate into arterial, venular, and capillary-like ECs when implanted in vivo, and induce arteriogenic remodeling of the local mouse vessels. Our results support the utility of differentiated EC transplantation to treat tissue ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC544288PMC
http://dx.doi.org/10.1073/pnas.0408357102DOI Listing

Publication Analysis

Top Keywords

human ecs
12
endothelial cells
8
vsmc chimeric
8
well formed
8
70-kda fitc-dextran
8
vessels
6
human
6
ecs
5
induction differentiation
4
differentiation remodeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!