Specific binding of bovine prolactin and somatotropin by granulosa cells from the antral follicles of various diameters was studied in cows at different reproductive states, prepubertal, pubertal, and early gestation. The ability of granulosa cells to bind prolactin did not depend on the reproductive state of an animal. At the same time, the dynamics of somatotropin specific binding by granulosa cells during maturation of the antral follicles differed at dissimilar reproductive states of the cows. When the diameter of follicles increased from 3-5 to 6-10 mm, specific binding of 125I-somatotropin decreased in pubertal animals, but remained unchanged in the prepubertal and pregnant animals. The results of Scatchard analysis of the binding data suggest that sexual maturation of cows did not affect the binding of prolactin and somatotropin by granulosa cells from follicles of 1-2 mm in diameter. The data obtained suggest that the decreased sensitivity of granulosa cells to somatotropin at the terminal stages of maturation of the antral follicles is essential for their development and acquisition of the ability for ovulation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

granulosa cells
24
specific binding
12
antral follicles
12
binding granulosa
8
cows reproductive
8
prolactin somatotropin
8
somatotropin granulosa
8
reproductive states
8
maturation antral
8
binding
6

Similar Publications

Cholic acid inhibits ovarian steroid hormone synthesis and follicular development through farnesoid X receptor signaling in mice.

Int J Biol Macromol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China. Electronic address:

This study investigated the effects of cholic acid (CA) on steroid hormone synthesis and follicular development in mouse ovaries and the regulatory mechanism of CA on the expression of steroidogenesis-related genes in granulosa cells. The mice were divided into control and CA groups, and serum and ovarian samples were collected after 1, 2, and 4 months of treatment, respectively. The results showed that CA treatment for 1, 2, and 4 months reduced ovarian weights, disrupted the estrous cycle, decreased the number of antral follicles and corpora lutea, and lowered the serum levels of progesterone and estradiol.

View Article and Find Full Text PDF

Role of fibrinogen-like 2 (FGL2) proteins in implantation: Potential implications and mechanism.

Gene

January 2025

Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China. Electronic address:

Fibrinogen-like (Fgl2) protein belongs to fibrinogen super family, which catalyzes the conversion of prothrombin to thrombin and is involved in the coagulation process. There are two different forms of functional Fgl2 protein: membrane associated Fgl2 (mFgl2) and soluble Fgl2 (sFgl2). mFgl2, as a type II transmembrane protein with property with prothrombinase activity from its N-terminal fragment, was extensively secreted or expressed by inflammatory macrophages, dendritic cells, Th1 cells and endothelial cells.

View Article and Find Full Text PDF

Ovarian granulosa cells produce a variety of biologically active compounds in addition to steroid hormones that include numerous families of growth factors, cytokines and adipokines. Many of these function as endocrine, paracrine and autocrine hormones to regulate ovarian activity. The goal of this review is to provide an update on the evidence in domestic animals on how FSH, insulin and IGF1 regulate the function of granulosa cells with a focus on ovarian steroidogenesis and cell proliferation with comparisons across six domestic animals: pigs, cattle, horses, water buffalo, goats and sheep.

View Article and Find Full Text PDF

The role of Anti-Müllerian hormone in women health.

Ginekol Pol

January 2025

Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, Poland, Poland.

Anti-Müllerian hormone (AMH), also known as Müller duct inhibitory factor and primarily known for its role in sexual differentiation. In female fetuses, AMH production by granulosa cells begins around the 36th week of gestation and continues in women until menopause. It is becoming more significant in the endocrine and gynecological diagnosis of adult women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!