AI Article Synopsis

  • The study investigates how human photoreceptors (cones and rods) handle visual flickering using electrophysiological and molecular techniques.
  • Researchers recorded voltage-gated Na+ currents in isolated human cones and analyzed the expression of Na+ channels.
  • Findings reveal that blocking certain currents leads to spontaneous action potentials, indicating the presence of SCN2 Na+ channels in both cones and rods, which may help reduce visual flickering by stabilizing photoreceptor activity.

Article Abstract

Purpose: The sense of vision in humans is robust, and visual flickering is rarely experienced. To investigate this mechanism, electrophysiological and molecular biological techniques were used on human cone and rod photoreceptors.

Methods: Voltage-gated currents were recorded using the patch-clamp technique on isolated human cones, and especially their voltage-gated Na+ currents were analyzed in detail. Whether Na+ channel transcripts could be detected in single photoreceptors using RT-PCR was also examined, to test the expression of voltage-gated Na+ channels in cones and/or rods.

Results: Under current-clamp conditions, blocking h currents (hyperpolarization-activated cationic currents) with Cs+, Tl+, or ZD7288 hyperpolarized the resting potentials of cones and rods by approximately 10 to 15 mV, and surprisingly generated spontaneous action potentials. The spontaneous spikes were blocked by 1 microM tetrodotoxin, but not by 1 mM Co2+, suggesting that they were Na+ spikes rather than Ca2+ spikes. Under voltage-clamp conditions, application of Cs+ and ZD7288 markedly decreased the steady inward current through the h channel. This is consistent with Cs+-induced hyperpolarization under a current-clamp condition. SCN2 Na+ channel was observed in both cones and rods by single-cell RT-PCR analysis, suggesting that human photoreceptors express the SCN2 Na+ channel.

Conclusions: The data confirmed that voltage-gated Na+ channels were expressed not only in human rods but also in cones by electrophysiological and molecular biological experiments. These results suggest that the h current may contribute to preventing visual flickering by inhibiting the generation of spontaneous Na+ spikes in human photoreceptors.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.04-0724DOI Listing

Publication Analysis

Top Keywords

voltage-gated na+
12
na+
9
spontaneous na+
8
action potentials
8
human cone
8
cone rod
8
visual flickering
8
electrophysiological molecular
8
molecular biological
8
na+ channel
8

Similar Publications

Article Synopsis
  • Protein/protein interactions (PPI) are important for brain functions, but their use as drug targets for brain disorders is not fully explored.
  • A small molecule called compound 1028 has been identified that targets the FGF14/Na1.6 PPI and affects the channel's activity, resulting in increased excitability of neurons.
  • Administering compound 1028 can enhance motivation under challenging conditions, and its effects are linked to changes in dopamine levels in the brain, suggesting a new way to impact behaviors related to neuropsychiatric disorders.
View Article and Find Full Text PDF

Background: Allergic rhinitis (AR) is a common cause of chronic cough, linked to dysregulated airway C- and Aδ-fibres through inflammatory mediators. Despite the limited efficacy of current antitussive therapies, recent studies show that the Na1.7 inhibitor can block cough in naïve guinea pigs.

View Article and Find Full Text PDF

Introduction: Hypoalgesic inflammatory bowel disease (IBD) may provide critical insights into human abdominal pain. This condition was previously associated with homozygosity for a polymorphism (rs6795970, A1073V; 1073 val/val ) related to Na v 1.8, a voltage-gated sodium channel preferentially expressed on nociceptors.

View Article and Find Full Text PDF

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

PIKfyve (1-phosphatidylinositol 3-phosphate 5-kinase), a lipid kinase, plays an important role in generating phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P). SGC-PIKFYVE-1, a potent and selective inhibitor of PIKfyve, has been used as a chemical probe to explore pathways dependent on PIKfyve activity. Based on reported changes in membrane dynamics and ion transport in response to PIKfyve inhibition, we hypothesized that pharmacological inhibition of PIKfyve could modulate pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!