AI Article Synopsis

  • Researchers used cDNA microarray technology to analyze gene expression in HEK-293 cell clones with high and low levels of store-operated Ca2+ entry (SOCE) to understand physiological roles of SOCE.
  • In the study, significant differences were found in gene expression between high SOCE clones and control cells, with 58 genes upregulated and 32 downregulated; low SOCE clones showed 92 genes upregulated and 58 downregulated compared to controls.
  • The study identified insulin receptor substrate (IRS)-2 as a potential regulator of SOCE, where reducing IRS-2 levels decreased SOCE in high clones, and increasing IRS-2 levels improved SOCE in low clones.

Article Abstract

Gene expression profiles were generated using cDNA microarray technology for clones of human embryonic kidney (HEK)-293 cells selected to have either high or low levels of store-operated Ca2+ entry (SOCE). For five high clones, three low clones, and control HEK-293 cells, duplicate Affymetrix U133A human gene arrays were run after extraction of total RNA from cells growing in the presence of serum. Of the approximately 22,000 genes represented on the microarray, 58 genes had readings at least twofold higher, while 32 genes had readings at least twofold lower, in all five high SOCE clones compared with control HEK-293 cells. In the low SOCE clones, 92 genes had readings at least twofold higher, while 58 genes had readings at least twofold lower, than in HEK-293 cells. Microarray results were confirmed for 18 selected genes by real-time RT-PCR analysis; for six of those genes, predicted changes in the low SOCE clone were confirmed by an alternative method, monitoring mRNA levels in HEK-293 with SOCE decreased by expression of small interfering (si)RNA to canonical transient receptor potential protein-1. Genes regulated by SOCE are involved in signal transduction, transcription, apoptosis, metabolism, and membrane transport. These data provide insight into the physiological role of SOCE. In addition, a potential regulator of SOCE, insulin receptor substrate (IRS)-2, has been identified. A reduction of IRS-2 levels by siRNA methods in two high clones dramatically reduced SOCE, whereas overexpression of IRS-2 in a low SOCE clone elevated SOCE.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00099.2004DOI Listing

Publication Analysis

Top Keywords

hek-293 cells
20
genes readings
16
readings twofold
16
low soce
12
soce
11
genes
9
gene expression
8
expression profiles
8
cells low
8
high clones
8

Similar Publications

Adeno-associated virus (AAV) expresses a membrane-associated accessory protein (MAAP), a small nonstructural protein, that facilitates AAV secretion out of the plasma membrane through an association with extracellular vesicles during AAV egress. Here, we investigated the host proteins that interact with AAV2 MAAP (MAAP2) using APEX2-mediated proximity labeling. We identified two SNARE proteins, Syntaxin 7 (STX7) and synaptosome-associated protein 23 (SNAP23), a vesicle (v-)SNARE and a target (t-)SNARE, respectively, that mediate intracellular trafficking of membrane vesicles aand exhibited associations with MAAP2 in HEK293 cells.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!