Bone marrow-derived adult liver stem cells (BALSC) are a promising target for the development of future cell-based therapies for a variety of liver disorders. However, the ability of stem cells to fully function, as hepatocytes, is limited and differentiation is time dependent. Therefore, it will be conducive to find a growth factor that is able to enhance liver-specific metabolic activity in freshly isolated liver stem cells. Recently, a subpopulation of BALSC was isolated and characterized (beta2-microglobulin-negative/ Thy-1-positive cells). We hypothesized that using interleukin-3 (IL-3), a hematopoietic differentiation growth factor, we may be able to enhance liver-specific metabolic activity in freshly isolated BALSC. Rat BALSC from normal and injured livers (bile duct ligated) were isolated and stimulated with IL-3 in culture. Cells were co-cultured with or without hepatocytes, separated by a semipermeable membrane. We measured the effect of IL-3 on BALSC to metabolize ammonia into urea (a liver-specific metabolic activity). IL-3 increased the ability of BALSC, purified from normal animals, to metabolize ammonia into urea by several folds. Interestingly, no such effect was found in cell cultures from bile duct-ligated animals. Additionally, co-cultures of BALSC with hepatocytes induced higher rate of ammonia metabolism, which was further enhanced by IL-3. Our study indicates that IL-3 may be used as an agent to enhance differentiation of BALSC, both qualitatively and quantitatively. It is conceivable that stem cells may undergo IL-3 priming before their clinical application in cell transplantation or bioartificial liver systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gassur.2004.10.013DOI Listing

Publication Analysis

Top Keywords

stem cells
20
metabolic activity
16
liver stem
12
liver-specific metabolic
12
bone marrow-derived
8
balsc
8
growth factor
8
factor enhance
8
enhance liver-specific
8
activity freshly
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.

Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.

View Article and Find Full Text PDF

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!