Low-power lasers are commonly used in human medicine for treatment of various pathological conditions, but mechanisms of their healing effects are still poorly understood. The results of this study provide information related to these effects at the cellular level. Two different protozoan species, Euglena gracilis and Tetrahymena thermophila, were used to study changes in locomotion behavior in response to low-power lasers. The cells were irradiated at 830 and 650 nm generated by a semiconductor laser (99 J/cm2, 360 mW) and a laser pointer (0.75 J/cm2, 5 mW), respectively, and their locomotion was recorded by a TV camera and analyzed using computer software. Exposure to laser light, regardless of the wavelength, resulted in increased cell velocity in both species (P <0.001). Exposure to 650 nm produced an equal increase in median cell velocity in both E. gracilis (19.0%) and T. thermophila (18.2%), and some increase persisted in the postirradiation 30 s period. Irradiation by the 830 nm laser resulted in a markedly higher response in Tetrahymena (29.4%) than in Euglena (15.2%), and the two median values remained increased after irradiation was discontinued. Different reactions found in the species studied and some mechanisms underlying the response of cells to radiation are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1562/0031-8655(2004)080<0531:EOLLIO>2.0.CO;2 | DOI Listing |
Hemostasis is a critical aspect of holmium laser enucleation of the prostate (HoLEP) for benign prostatic hyperplasia (BPH). While HoLEP offers superior outcomes compared to traditional techniques, effective intraoperative and postoperative bleeding control remains a challenge. This report evaluates the feasibility and safety of PuraBond® (3-D Matrix, Ltd.
View Article and Find Full Text PDFJ Lasers Med Sci
December 2024
Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The treatment of chronic testicular pain is a complex condition that will be encountered by most practicing clinicians. In this study, the influence of low-level laser irradiation of the red and infrared spectral range for treating chronic testicular pain was evaluated and compared. In this double-blind, placebo-controlled randomized clinical trial study, 60 patients were randomly divided into three groups of 20: (1) low-level laser group with red (650 nm, 50 mW), (2) low-level laser group with infrared (820 nm, 100 mW) and (3) laser placebo group.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.
The global increase in urolithiasis prevalence has led to a shift towards minimally invasive procedures, such as retrograde intrarenal surgery, supported by advancements in laser technologies for lithotripsy. Pulsed lasers, particularly the holmium YAG and the newer thulium fiber laser, have significantly transformed the management of upper urinary tract stones. However, the use of high-power lasers in these procedures introduces risks of heat-related injury.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
Neuromorphic engineering has emerged as a promising avenue for developing brain-inspired computational systems. However, conventional electronic AI-based processors often encounter challenges related to processing speed and thermal dissipation. As an alternative, optical implementations of such processors have been proposed, capitalizing on the intrinsic information-processing capabilities of light.
View Article and Find Full Text PDFSci Rep
January 2025
MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
We integrate monolayer TMDCs into silicon-on-insulation (SOI) waveguides and dielectric-loaded surface plasmon polariton (DLSPP) waveguides to enhance nonlinear parameters (γ) of silicon-based waveguides. By optimizing the waveguide geometry, we have achieved significantly improved γ. In MoSe-on-SOI and MoSe-in-DLSPP waveguide with optimized geometry, the maximum γ at the excitonic resonant peak (λ) is 5001.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!